
10 coMMunicaTions of The acM | mArCh 2012 | vol. 55 | No. 3

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Bertrand Meyer
“What ‘Beginning’
students already
Know: The evidence”
http://cacm.acm.org/
blogs/blog-cacm/104215

 January 25, 2011

For the past eight years I have been
teaching the introductory program-
ming course at ETH Zurich, using the
“inverted curriculum” approach de-
veloped in a number of my earlier ar-
ticles. The course has now produced a
textbook, Touch of Class.1 It is definite-
ly “objects-first” and most important-
ly contracts–first, instilling a dose of
systematic reasoning about programs
right from the start.

Since the beginning I have been
facing the problem that Mark Guzdial
describes in his recent blog entry2:
that an introductory programming
course is not, for most of today’s stu-
dents, a first brush with program-
ming. We actually have precise data,
collected since the course began in its
current form, to document Guzdial’s
assertion.

Research conducted with Michela
Pedroni, who played a key role in the
organization of the course until last

We do not know of any incentive for
students to bias their answers one
way or the other; the 2009 and 2010
questionnaires did not show any sig-
nificant deviation; and informal in-
quiries suggest that the ETH student
profile is not special. In fact, quoting
from the paper:

We did perform a similar test in a
second institution in a different country
[the U.K.]. The results from the student
group at University of York are very simi-
lar to the results at ETH; in particular,
they exhibit no significant differences
concerning the computer literacy out-
comes, prior programming knowledge,
and the number of languages that an
average student knows a little, well, and
very well. A comparison is available in a
separate report.4

Our paper3 is short and I do not
want to repeat its points here in any
detail; please read it for a precise
picture of what our students already
know when they come in. Let me sim-
ply give the statistics on the answers to
two basic questions: computer experi-
ence and programming language ex-
perience. We asked students how long
they had been using a computer (see
the first chart).

year, and Manuel Oriol, who is now at
the University of York, led to an ETH
technical report: What Do Beginning
CS Majors Know?3 It provides detailed,
empirical evidence on the prior pro-
gramming background of entering
computer science students.

Some qualifications: The infor-
mation was provided by the students
themselves in questionnaires at the
beginning of the course; it covers the
period 2003–2008; and it applies only
to ETH. But we do not think these fac-
tors fundamentally affect the picture.

Knowledgeable
Beginners
Bertrand Meyer presents data on the computer and programming
knowledge of two groups of novice CS students.

DOI:10.1145/2093548.2093551 http://cacm.acm.org/blogs/blog-cacm

BeRTRanD MeyeR

“an introductory
programming course
is not, for most
of today’s students,
a first brush with
programming.”

blog@cacm

mArCh 2012 | vol. 55 | No. 3 | coMMunicaTions of The acM 11

These are typically 19-year-old stu-
dents. A clear conclusion is that we
need not (as we naively did the first
time) spend the first lecture or two
telling them how to use a computer
system.

The second chart summarizes the
students’ prior programming expe-
rience (again, the paper presents a
more detailed picture).

Eighteen percent of the students
(the proportion ranges from 13%–22%
across the years of our study) have
had no prior programming experi-
ence. Thirty percent have had pro-
gramming experience, but not object-
oriented; the range of languages and
approaches, detailed in the paper, is
broad, but particularly contains tools
for programming Web sites, such
as PHP. A little more than half have
object-oriented programming expe-
rience; particularly remarkable are
the 10% who say they have written an
object-oriented system of more than

100 classes, a significant size for sup-
posed beginners!

Guzdial’s point was that “There is
no first”; we are teaching students who
already know how to program. Our
figures confirm this view only in part.
Some students have programmed
before, but not all of them. Quoting
again from our article:

At one end, a considerable fraction of
students have no prior programming ex-
perience at all (between 13% and 22%) or
only moderate knowledge of some of the
cited languages (about 30%). At the pres-
ent stage the evidence does not suggest a
decrease in either of these phenomena.

At the other end, the course faces a
large portion of students with expertise
in multiple programming languages
(about 30% know more than three lan-
guages in depth). In fact, many have
worked in a job where programming was
a substantial part of their work (24% in
2003, 30% in 2004, 26% in 2005, 35% in
2006, 31% in 2007 and 2008).

This is our real challenge: How to
teach an entering student body with
such a variety of prior programming
experience. It is difficult to imagine
another scientific or engineering dis-
cipline where instructors face compa-
rable diversity; a professor teaching
Chemistry 101 can have a reasonable
image of what the students know about
the topic. Not so in computer science
and programming. (In a recent discus-
sion, Pamela Zave suggested that our
experience may be comparable to that
of instructors in a first-year language
course, such as Spanish, where some
of the students will be total beginners
and others speak Spanish at home.)

How do we bring something to all of
them, the crack coder who has already
written a compiler (yes, we have had
this case) or an e-commerce site and
the novice who has never seen an as-
signment before? It was the in-depth
examination of these questions that
led to the design of our course, based
on the “outside-in” approach of using
both components and progressively
discovering their insides; it also led
to the Touch of Class textbook1, whose
preface further discusses these issues.

A specific question that colleagues
often ask when presented with statis-
tics such as the above is why the expe-
rienced students bother to take a CS
course at all. In fact, these students

know exactly what they are doing.
They realize their practical experience
with programming lacks a theoretical
foundation and have come to the uni-
versity to learn the concepts that will
enable them to progress to the next
stage. This is why it is possible, in the
end, for a single course to have some-
thing to offer to aspiring computer
scientists of all bents—those who
seem to have been furiously coding
from kindergarten, the total novices,
and those in between.

References
1. bertrand Meyer, Touch of Class: Learning to Program

Well with Objects and Contracts, springer Verlag, 2009,
see details and materials at http://touch.ethz.ch/.

2. Mark Guzdial, We’re too Late for ‘First’ in CS1,http://
cacm.acm.org/blogs/blog-cacm/102624.

3. Michela Pedroni, Manuel oriol, and bertrand
Meyer, What Do Beginning CS Majors Know?,
technical report 631, eth Zurich, Chair of software
engineering, 2009, http://se.ethz.ch/~meyer/
publications/teaching/background.pdf.

4. Michela Pedroni and Manuel oriol, A Comparison of CS
Student Backgrounds at Two Technical Universities,
technical report 613, eth Zurich, 2009, ftp://ftp.inf.
ethz.ch/pub/publications/tech-reports/6xx/613.pdf.

Bertrand Meyer is a professor at eth Zurich and ItMo
(st. Petersburg) and chief architect of eiffel software.

© 2012 aCM 0001-0782/12/03 $10.00

BeRTRanD MeyeR

“it is difficult
to imagine
another scientific
or engineering
discipline where
instructors face
comparable diversity;
a professor teaching
chemistry 101 can
have a reasonable
image of what
the students know
about the topic.
not so in computer
science and
programming.”

computer experience.

2–4 yrs: 4%

5–9 yrs: 42%

≥ 10 yrs: 54%

Programming experience.

≥ 100 Classes: 10%

None: 18%

No O-O: 30%

Some O-O: 42%

