
July 7, 2011 PROJECT REPORT

1

INTRODUCTION
In this project, we analyze the basic scheduling mechanism as provided by the VxWorks Real-
Time Operating System (RTOS) and get acquainted with the VxWorks in the Tornado
environment. We implement the Earliest Deadline First (EDF) scheduler by creating various task
set.

A brief overview of VxWorks

VxWorks is a Real-Time Operating System developed by Wind River, with support for multi-
tasking, mutual exclusion, easy to use inter-task communication, and two types of scheduling
namely (Rate Monotonic Scheduling) RMS and EDF. For development purposes, the Tornado
environment is used with VxWorks. VxWorks applications work at the Operating System (OS)
layer. Applications can make system calls to the VxWorks kernel through an API in order to
interface with the board’s hardware. The Xilinx hardware API is also available for writing
application code, but VxWorks handles interfacing with this API for the most part.

VxWorks uses the tick as its timing unit. A tick is a certain number of Central Processing Unit
(CPU) cycles, defined at the kernel level. We need to set up local Wind Registry on our
computer in order to keep track of all the target servers running in a given environment. A shell
interface is provided by the VxWorks in the Tornado Environment which can be used for
spawning the tasks, killing the tasks, determining the status of various tasks and various
functions can also be called directly.

July 7, 2011 PROJECT REPORT

2

 sp <function_name>: Spawn a task, starting at the beginning of function_name.

Tasks in VxWorks

Tasks in VxWorks are essentially the same as processes in any operating system. They have a
stack, memory space, and priority. They also have a task ID (denoted as TID), which
corresponds to a process ID (denoted as PID) in other operating systems. Tasks may be in one or
more of several states in VxWorks, including Pending, Ready, Running, and Suspended. Pending
tasks either have not yet been scheduled or are waiting on some kind of inter-task
communication. Ready tasks are ready to run, but have not currently been allocated processor
time by the scheduler. Suspended tasks are never allocated processor time until they are resumed,
but have not been deleted. The VxWorks libraries taskLib and taskInfo provide many useful
functions for dealing with tasks. They are included by simply including vxworks.h.

Task Scheduling

In VxWorks, tasks are given a priority ranging from 0 to 255 corresponding to the highest to the
lowest priority respectively (note the inverse relationship). The board support and system critical
tasks fall within the priority range of 0-99. Application tasks fall in the range 100-255 and should
never be higher priority than 100. The command sp defaults to priority 100.

VxWorks supports two scheduling algorithms: the Preemptive Priority Scheduling and the
Round-Robin Scheduling with Priority. The default is the Preemptive Priority Scheduling.

In this scheduling algorithm, the highest-priority task is given the CPU all of the time until it
blocks or completes. When a task of higher priority than the one currently running is spawned,
the running task is preempted and the CPU is given over to the new task. Once this task
completes, the previous task will resume execution, so long as there is not another task of higher
priority waiting to run. The key defect with this scheduling algorithm arises with tasks of equal
priority. When multiple tasks of equal priority are running, one may never be allocated processor
time if another task of the same priority never blocks. Before proceeding with the task
scheduling, we need to calibrate the dummy loops in order to have reasonably precise
computation times for the tasks. We are interested in finding how much iteration corresponds to
a time tick. The calibrate() method in the EDF implementation runs this task. In the Tornado
shell, we should see a message similar to the following:

July 7, 2011 PROJECT REPORT

3

Our EDF Scheduler Implementation:

We implemented an EDF Scheduler in EDFScheduler() method. EDF is a dynamic priority
scheduler that changes the priorities of the tasks dynamically at regular intervals. We write the
init () function to call EDFScheduler() method which in turn schedules the execution of three
instances of Ptask() with different computation times and periods. The EDFScheduler()
method must have priority over the Ptask() processes in order to be able to reprioritize them.
We keep track of the changing absolute deadlines of the individual tasks adjusting their priorities
as needed. A periodic scheduler task which regularly changes the task priorities based on the last
updated deadline values.

STEPS FOR RUNNING THE EDF SCHEDULER IN TORNADO
ENVIRONMENT:

Setting up the project:

a. From the “Start” menu, “All Programs”>”Tornado 2.2″>”Tornado”
b. If the “Create Project in New/Existing Workspace” dialog is up, click on “New”. If not,

from the “File” menu select “New Project…”
c. Click “Create downloadable application modules for VxWorks”, click “OK”
d. Enter the following parameters:

 “Name:”, “RTS_Project”
 “Location:”, “C:\Tornado2.2\target\proj\RTS_Project”

July 7, 2011 PROJECT REPORT

4

 “Add to a New or Existing Workspace”,
“C:\Tornado2.2\target\proj\Workspace0.wsp”

e. Click “Next”
f. Select the “A toolchain” option. Select “SIMNTgnu” to use the simulator. Otherwise,

select the appropriate toolchain. Click “Next”
g. Click “Finish”

Add a file for entering the Program:

h. From the “File” menu, select “New…”
i. Select the following parameters:
j. From the left box, “C/C++ Source File”
k. “Add to project:”, “RTS_Project.wpj”
l. “File name:”, “EDF_Scheduler.c”

“Location:”, “C:\Tornado2.2\target\proj\RTS_Project”
m. Click “OK”
n. Enter the implemented code into EDF_Scheduler.c:
o. Save the file.

Build the Project:

p. From the “Build” menu, select “Build”
q. Click “OK” to generate dependencies (i.e. include files).

July 7, 2011 PROJECT REPORT

5

Start the Simulator, download and run your program:
r. From the “Tools” menu, select “Simulator…” (Or click the “Launch Simulator” button)
s. Click “OK” to run the standard simulator

t. If you get a ‘A Target Server named “vxsim@XXXXXXX” is required and will be
started.’ dialog, click “OK”. (Note: If you’ve been messing around with the full simulator,
click “Details >>” and ensure the “Integrated simulator” option is selected.)

u. A “VxSim0″ window should appear and the red target server icon should appear in your

system tray.

July 7, 2011 PROJECT REPORT

6

v. Right-click on “RTS_Project Files” and select “Download RTS_Project.out”.
w. From the “Tools” menu, select “Shell…”; click “OK”. (Or click the “Launch Shell”

button).
x. In the shell window, type “i” and hit ENTER to see the list of running tasks. You should

get something like:
y. -> i

July 7, 2011 PROJECT REPORT

7

 Type “sp startit” and hit <ENTER>. You should get the following output:

July 7, 2011 PROJECT REPORT

8

z. The final output appears on the screen as:

	Build the Project:
	Start the Simulator, download and run your program:

