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Abstract— The abort-and-restart scheme from the 

Priority-based Functional Reactive Programming (PFRP) 

paradigm eliminates the priority inversion problem. This 

paper is similar by solving the priority inversion problem 

using the task order restrictions sets of relations. One of 

the core problems in real-time systems is finding a feasible 

schedule for a task set on a multiprocessor platform. While 

preemptive scheduling has benefited from a large number 

of significant results, the non-preemptive case has still 

room for improvement. 

Despite the fact that the well-known EDF and LLF 

scheduling techniques are optimal for preemptive 

uniprocessor platform there is no known optimal 

scheduling algorithm for non-preemptive task sets on a 

multi-processor platform. Our paper continues our 

previous works [1] and [2] by describing the experimental 

results together with their findings about our alternate 

scheduling method to the EDF and LLF techniques. Our 

algorithm, called 𝔸, is able to schedule all considered non-

preemptive independent tasks on a multi-processor 

platform, while EDF and LLF fail to sometimes provide a 

feasible schedule. The experiments indicate no execution 

time overhead for the cases where all the scheduling 

algorithms were able to provide the schedule. However, 

when EDF and LLF fail to provide a schedule, 𝔸 gives the 

schedule with a 60% execution time overhead. 

   

Keywords—scheduling algorithm, multiprocessor 

platform, non-preemptive task 

I. INTRODUCTION 

The Priority-based Functional Reactive Programming 

(PFRP) paradigm [14,15,16] is a new declarative 

approach to modeling and building reactive systems. 

The PFRP paradigm intends to improve the 

programming of real-time embedded controllers, 

typically programmed using C programming language or 

assembly language. PFRP programs are written as a 

collection of functions (hence, stateless). The PFRP 

compiler generates resource-bounded C code that 

comprises in a group of event handlers, where each 

event handler is responsible for a single interrupt or 

event source. The semantics of PFRP requires that each 

event handler executes atomically. This requirement 

facilitates reasoning about PFRP programs and thus is a 

desirable feature of the language. However, this means 

that a lower-priority task is aborted when a higher-

priority task arrives. The task is restarted once the higher 

priority task completes. By its nature, PFRP, with its 

abort-and-restart scheme, eliminates the priority 

inversion problem. This paper is similar by solving the 

priority inversion problem using the task order 

restrictions sets of relations (Section 3).  

    Finding optimal feasible schedules of task sets under 

various constraints has always been an important 

research area in the real-time embedded systems 

community. Stankovic, Spuri, Di Natale, and Butazzo 

investigated the boundary between polynomial and NP-

hard scheduling problems [3]. There are only few 

subclasses of the general scheduling problem that have 

polynomial-time complexity optimal algorithms. 

Dertouzos showed that the Earliest Deadline First (EDF) 

algorithm has polynomial complexity and can solve the 

uniprocessor preemptive (i.e., a task is preemptive if its 

execution can be interrupted and resumed later) 

scheduling problem [4]. Mok discovered another optimal 

algorithm with polynomial complexity for the same 

subclass, that is, the Least Laxity First (LLF) algorithm 

[5]. Another polynomial algorithm was found by Lawler 

in 1983 for non-preemptive (i.e., a task is non-

preemptive if its execution cannot be interrupted) unit 

computation time tasks with arbitrary start time [6]. 

However, according to Graham, Lawler, Lenstra and 

Kan [7], when dealing with non-preemptive and non-

unit computation time tasks, the scheduling problem 

becomes NP-hard. 

   Scheduling non-preemptive tasks has received less 

attention in the real-time embedded systems community 

than preemptive scheduling. Despite this, non-

preemptive scheduling is widely used in industry [8]. 

For example, non-preemptive scheduling algorithms 

have lower overhead than the corresponding preemptive 
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scheduling algorithms because of the inter-task 

interference caused by caching and pipelining. The 

benefits of using non-preemptive tasks versus 

preemptive tasks are multiple on multiprocessor 

platforms, since the task migration overhead is higher 

and difficult to predict. This problem has less negative 

impact on non-preemptive scheduling because each task 

instance runs until its completion on the same processor 

and task migration might occur at task instance 

boundaries. 

    There exist many models to define a task and a job. 

For simplicity, we consider only single-instance tasks, 

that is, without considering their periods. That is why, 

we use throughout this paper the terms task and job 

interchangeably. In this paper, we consider that a task T 

is denoted by (s, c, d) and characterized by three 

parameters: s is called the start time (also known as the 

release time), c is called the computation time (also 

known as the worst-case execution time), and d is called 

the deadline. The meaning is that task T can be executed 

after s time units, completing a total of c time units by 

the deadline d. For simplicity, we consider the tasks to 

be single instance. Hence there is no need to consider the 

tasks’ periods. In fact, the results and examples from this 

paper can be extended to periodic or sporadic tasks. 

Without loss of generality, we assume that s, c, and d are 

non-negative integers, although a task may have rational 

values for some parameters when needed. Given a task 

set 𝕋 = {Ƭ1, ..., Ƭn}, 𝕋 is called schedulable by a 

scheduling algorithm if all the timing constraints of all 

tasks in 𝕋 are met. The scheduling algorithm is called 

optimal if whenever it cannot find a schedule, then no 

other scheduling algorithms can [9]. 

    Our scheduling algorithm, called 𝔸, is able to provide 

feasible schedules for all task sets for which the EDF 

and LLF methods identified a feasible schedule. In fact, 

for many task sets for which the EDF and LLF methods 

could not identify a feasible schedule, Algorithm 𝔸, was 

able to provide feasible schedule. This is supported by 

Lemma 3.1 and the experimental results section, where 

we provide a more accurate comparison between 𝔸 with 

EDF or LLF. 

    The remainder of this paper is organized as follows. 

The next section describes the notations, definitions, and 

some examples needed for the scheduling problem, in 

particular EDF, LLF, and Algorithm 𝔸. Section III 

presents 𝔸, followed by Section IV, called Experimental 

Results. Conclusion and References end the paper. 

II. PRELIMINARIES 

Our paper considers the multiprocessor platform, 

independent non-preemptive tasks, and no shared 

resources, overhead, or context-switching time. Similar 

to the approach from [9], we assume that the task 

constraints are known in advance, such as deadlines, 

computation times, and start times. 

    A time interval is a set of time stamps with the 

property that any time stamp lying between two time 

stamps in the set is also included in the set. For example, 

[s, e) denotes a time interval that is left-closed and right-

open. We say that task Ƭ executes in the time interval [s, 

e)(p)  if T is ready to execute on processor p at time s and 

finishes its execution just before time e, allowing the 

next task to start its execution on processor p at time e. 

The set with no elements is called the empty set and is 

denoted by ∅. We say that [s, e)(p1) ∩ [s′, e′) (p2) = ∅ if and 

only if either p1 ≠ p2 or [s, e) ∩ [s′, e′) = ∅ in the 

mathematical sense (symbol ∩ means the interval 

intersection). We consider in our paper that the 

multiprocessor platform is simply denoted as ℙ = {p1, ..., 

pm}, where p1, ..., pm are processors. In this paper, we 

consider m < n, otherwise the scheduling problem 

would be trivial. For a finite set V, we denote by |V | the 

number of elements of V. We consider in this paper a 

task set denoted as 𝕋 given by {Ƭ1, ..., Ƭn}, where each 

task Ƭi is represented by (si, ci, di). Since each task has a 

deadline, the scheduling problem for the multiprocessor 

environment becomes difficult [10]. We say that the task 

set 𝕋 is schedulable on the multiprocessor platform ℙ if 

there exists a schedule for each task Ti such that Ti 

executes in interval [s, e)(p), that is, task Ti executes on 

processor p in the time interval from time s to time e, 

and satisfies the following two properties: 

1) si ≤ s < e  ≤ di and e – s = ci; 
2) there is no other task T’ executed by processor p 

within interval [s, e). 

    Given a task set 𝕋 = {T1, ..., Tn}, where each task Ti is 

given by (si, ci, di) for any i ∈  {1, ..., n}, the EDF 

scheduling means the task with the earliest deadline, that 

is, di has the highest priority. The LLF scheduling means 

the task with the smallest laxity, that is, li = di – ci - si 

has the highest priority. The definition of laxity for 

preemptive tasks includes the time instance because a 

task’s priority may change during its execution. 

However, due to the fact that the tasks are non-

preemptive, the tasks’ priorities do not change during 

their execution.   

    The following example shows a task set for which the 

EDF method fails to provide a schedule on a four 

processor platform. 

 

Example 2.1. Let 𝕋1 = {T1, ..., T12} be a single instance 

and non-preemptive task set given by: T1 = (0, 1, 1), T2 = 

(0, 1, 2), T3 = (0, 2, 3), T4 = (0, 2, 3), T5 = (0, 2, 4), T6 = 

(0, 2, 4), T7 = (0, 4, 5), T8 = (0, 1, 5), T9 = (0, 1, 5), T10 = 

(0, 1, 5), T11 = (0, 2, 5) and T12 = (0, 1, 5). The deadlines 

are sorted increasingly. The EDF method fails to provide 

a feasible schedule for 𝕋1 on a four-processor platform, 

ℙ = {p1, p2, p3, p4}. This is because tasks T1, T2, T3, and 

T4 will be chosen to be first executed on processors p1, 

p2, p3, and p4, respectively. Then, T5 and T6 will be 

scheduled for processors p1 and p2. Therefore, task T7 

will miss its deadline because all the processors have left 

less than 3 available time units to execute.                                   

    However, 𝕋1 is LLF-schedulable because T1 executes 

in [0, 1)(p1), T2 executes in [0, 1)(p2), T3 executes in [0, 



2)(p3), T4 executes in [0, 2)(p4), T7 executes in [1, 5)(p1), T5 

executes in [1, 3)(p2), T6 executes in [2, 4)(p3), T11 

executes in [2, 4)(p4), T8 executes in [3, 4)(p2), T9 executes 

in [4, 5)(p2), T10 executes in [4, 5)(p3), and T12 executes in 

[4, 5)(p4).        ■ 

 

The following example shows a task set for which the 

LLF method fails to provide a schedule on a two 

processor platform. 

 

Example 2.2. Let 𝕋2 = {T1, ..., T6} be a single instance 

and non-preemptive task set on a two-processor platform 

ℙ = {p1, p2} given by: T1 = (0, 2, 2), T2 = (0, 2, 2), T3 = 

(0, 3, 6), T4 = (0, 3, 6), T5 = (0, 1, 5), and T6 = (0, 1, 5). 

The laxities are sorted increasingly, namely l1 = 0, l2 = 0, 

l3 = 3, l4 = 3, l5 = 4, and l6 = 4. The LLF method fails to 

provide a feasible schedule for 𝕋2 on a two-processor 

platform. According to the LLF scheduling strategy, 

tasks T1 and T2 will be chosen to be first executed on 

processors 1 and 2, respectively. Then, T3 and T4 will be 

scheduled on processors p1 and p2, respectively. As a 

result of the LLF strategy, both tasks T5 and T6 cannot be 

scheduled because they will miss their deadline of 5. 

Hence, the LLF scheduling method fails to provide a 

feasible schedule for the above task set.  

    However, 𝕋2 is EDF schedulable because T1 executes 

in [0, 2)(p1), T2 executes in [0, 2)(p2), T5 executes in [2, 

3)(p1), T6 executes in [2, 3)(p2), T3 executes in [3, 6)(p1), 

and T4 executes in [3, 6)(p2).                                            ■  

 

The next example shows a task set that is neither LLF 

schedulable nor EDF schedulable on a two processor 

platform. 

 

Example 2.3. Let 𝕋3 = {T1, ..., T7} be a single instance 

and non-preemptive task set on a three-processor 

platform, ℙ = {p1, p2, p3} given by: T1 = (0, 2, 2), T2 = (0, 

7, 7), T3 = (0, 8, 9), T4 = (0, 3, 6), T5 = (0, 1, 5), T6 = (0, 

5, 12), and T7 = (0, 3, 11). The laxities are sorted in an 

increasing order. Hence the LLF scheduler will first 

assign tasks T1, T2, and T3 to be executed on processors 

1, 2, and 3, respectively. Then, task T4 will be scheduled 

for processor 1. Hence, task T5 will miss its deadline.  

    By following the EDF scheduling method, T1, T5, and 

T4 will be assigned to processors 1, 2, and 3, 

respectively. Hence, task T2 will miss its deadline.  

    In conclusion, the task set 𝕋3 is neither LLF-

schedulable nor EDF-schedulable.       ■ 

III. OUR SCHEDULING ALGORITHM 𝔸 

We describe Algorithm 𝔸 that takes a single-instance 

non-preemptive and independent task set and returns a 

feasible schedule. It may happen however that the task 

set to be feasible, but Algorithm 𝔸 would not be able to 

provide a feasible schedule. We define first the ordering 

relation for the task sets. This ordering relation is 

actually based on task laxities. 

 

Definition 3.1. Given two tasks Ƭ1 = (s1, c1, d1) and Ƭ2 = 

(s2, c2, d2), we say that Ƭ1 < Ƭ2 if d1 - c1- s1 < d2 - c2 - s1 

or (d1 - c1 -s1 = d2 -c2 - s1 and d1 < d2). We say that Ƭ1 ≤ 

Ƭ2 if Ƭ1< Ƭ2 or Ƭ1= Ƭ2.         ■ 

 

Example 3.1. Given a task set 𝕋  = {Ƭ1, Ƭ2, Ƭ3} where Ƭ1 

= (0, 1, 3), Ƭ2 = (0, 2, 5) and Ƭ3 = (0, 2, 4), we have Ƭ1 ≤  

Ƭ2, Ƭ1 ≤  Ƭ3 and Ƭ3 ≤  Ƭ2.       ■ 

 

Definition 3.2. Given two tasks Ƭ1 = (s1, c1, d1) and Ƭ2 = 

(s2, c2, d2) such that Ƭ1 < Ƭ2, we say that Ƭ1  x Ƭ2 if d2 < 

x + c1 + c2 ≤ d1, s1 ≤  x and s2 ≤  x. For a task set 𝕋 = {T1, 

..., Tn}, we define the set of task order restrictions 

relation TOR(𝕋 ) = {Ƭi  x Ƭj | where i,  j ∊ {1, 2, …, n}}.  

  ■ 

 

Definition 3.2 provides a way of handling the situations 

where the main ordering relation cannot find a feasible 

schedule. For two tasks T1 and T2, with T1 < T2, the first 

attempt is always to schedule T1 and then T2.  

    However, if x (or more) time units have already been 

executed on processor p and T1  x T2, it is no longer 

possible to schedule task T1 and then task T2 on 

processor p, simply because the latter will miss its 

deadline. 

    Nevertheless, if d2 < d1, it is sometimes possible that 

T2 cannot meet its deadline with this scheduling order, 

but T1 and T2 can both meet their deadlines if T2 is 

scheduled first. 

    On the other hand, the task order restriction does not 

forbid other possible scheduling decisions: 

1. It may be possible to schedule task T1 and then task 

T2 on the same processor p, if the amount of time 

previously executed on p is lower than x; 

2. It may also be possible to schedule task T1 and then 

task T2, even after moment x, on different 

processors; 

3. More important for our goal, at moment x, it is 

definitely possible to schedule task T2 and then task 

T1 on the same processor, such that none of them 

misses its deadline. 

 

In fact, the task order restriction relation was specifically 

introduced to handle a special case: a task T1 has already 

been scheduled on a processor, another task T2 cannot be 

scheduled right after T1 on the same processor, but 

switching the order of the two tasks allows both of them 

to meet their deadlines. 

    It is easy to see that, given two tasks T1 and T2 such 

that T1 ≤ T2, if T1  x T2, then the values of x for which 

the restriction holds belong to the interval (d2 − c1 − c2, 

d1 − c1 − c2].  

    We note that both ordering relations defined above, < 

and  x, are concerned with comparing and switching 

tasks on the same processor. Example 3.2 describe how 

to construct and use the ordering relation  x for a task 

set. 

 



Example 3.2. Let us consider the task set from Example 

2.3. The laxities li = di − ci - si for all i ∈ {1, …,7} are, in 

order, l1 = 0, l2 = 0, l3 = 1, l4 = 3, l5 = 4, l6 = 7, and l7 = 8. 

Hence, the task set is already sorted in an increasing 

order upon their laxities. According to Definition 3.2, 

TOR(𝕋3) = {T3  0 T5; T4  2 T5; T6  4 T7}. However, it 

may be possible to have more than just one value. For 

example, given T1 = (0, 6, 13) and T2 = (0, 3, 11), it is 

clear that T1 ≤ T2. In order to investigate what values x 

can get, we consider the inequality from Definition 3.2, 

that is, 11 < x + 6 + 3 ≤ 13: Hence, x may take two 

possible values, namely x = 3 and x = 4.     ■ 

 

The ordering relations “≤” and “ x” between tasks will 

be used in Algorithm 𝔸. In addition, we consider a chain 

of tasks C as [T1, ..., Tk], a list of tasks from the given 

task set 𝕋. We denote the computation of the chain c(C) 

as c(T1)+ ... +c(Tk) and last(C) as Tk. We denote by C 

−last(C) the chain C obtained after removing its last 

task. We denote by C + T the chain obtained by 

concatenating C and task T. Algorithm 𝔸 tries to 

generate a schedule for 𝕋 on a multiprocessor platform. 

It can be viewed as a beneficial combination of two 

“complementary” scheduling techniques, LLF and EDF. 

Algorithm 𝔸 below (extended from [1] and [2]) will be 

able to generate schedules for all task sets from 

Examples 2.1, 2.2, and 2.3. 

 

Algorithm 𝔸 
Input: A set of single-instance non-preemptive and 

independent tasks 𝕋 = {T1, ..., Tn} on a m = |ℙ| processor 

platform, where each task Ti = (si, ci, di), for all i ∈ {1; ..., 

n}, such that d1 ≤ ... ≤ dn. 

Output: A schedule for the task set 𝕋 on a m-processor 

platform. Otherwise, display that 𝕋 is infeasible using 

𝔸-algorithm. 

 

1. Sort lexicographically tasks T1, .., Tn under di - ci - si as 

a primary key and di as a second key. The obtained list is 

T ′ = [Tπ(1), ..., Tπ(n)], where π is the corresponding 

permutation such that Tπ(i) ≤ Tπ(i+1) for all i ∈{1, .., n-1}; 

2. TOR(T ′) = Ø; 

3. for (i =1; i < n; i++)  

4.   if (d(Tπ(i)) - c(Tπ(i)) - s(Tπ(i)) ≥ 0) 

5.     for (j = i + 1; j ≤ n; j++) 

6.       if (∃x ≥ 0, d(T π(j)) < x + c(Tπ(i)) + c(Tπ(j)) ≤d(Tπ(i)) ) 

7.         TOR(T′ )=TOR(T′ ) ∪ {T π(i)  x T π(j)}; 

8. Choose T π(1), ..., T π(m) as the set of initial tasks for the 

first p chains; 

9.  Remove T π(1),..., T π(m) from the list T '; 

10. feasible = true; 

11.  while (T ′ is a non-empty set && feasible) { 

12.    Let T  be the first task from T 
 '; 

13.    Choose a chain C such that c(T) + c(C) ≤ d(T); 

14.    if (such a chain exists) { 

15.      Remove T from T ′; 

16.      Add T to chain C; 

         } 
    else { 

17.       Choose a chain C such that last(C) x T is in 

           TOR(T ′ ), where x ≥ c(C -last(C)); 

18.        if (such a chain C exists) { 

19.          Add T to chain C, but switch T and last(C); 

20.          Remove T from T ′; 
           } 
      else { 

21.          print ‘𝔸 was unable to find a schedule’; 

22.          feasible = false; 
      } 

    } 

23.   if (feasible) { 

24.     print ‘𝕋  is feasible and its schedule’; 
   } } } 

 

Lemma 3.1. If a task set 𝕋 is LLF-schedulable, then 

Algorithm 𝔸 will produce the same schedule.    ■ 

 

Proof. If the input task set 𝕋 is LLF-schedulable, then 

the statements from lines 17 to 22 will never be executed 

because it will always be a chain such that c(T) + c(C) ≤ 

d(T). Hence, the schedule provided by Algorithm 𝔸 will 

be exactly the same as the LLF schedule.               ■ 

 

Theorem 3.1. (correctness of Algorithm 𝔸) Let us 

consider a set of single-instance non-preemptive and 

independent tasks 𝕋 = {T1, ..., Tn} on a m = |ℙ| processor 

platform, where each task Ti = (si, ci, di), for all i ∈ {1, ..., 

n}, such that d1 ≤ ... ≤ dn. 

    Upon its execution, Algorithm 𝔸 will produce a 

correct schedule for the task set 𝕋 on a p-processor 

platform. Otherwise, display that 𝔸 was unable to find a 

feasible schedule.       ■ 

 

Proof. Line 1 sorts the tasks according to their laxities, 

as stated in the LLF scheduling technique. Obviously, 

the tasks may be reordered from the lowest laxity (hence 

the highest priority) to the highest laxity (so the lowest 

priority) as described by the permutation π. Hence, the 

obtained list is T ′ = [Tπ(1), ..., Tπ(n)], where π is the 

corresponding permutation such that Tπ(i) ≤ Tπ(i+1) for all i 

∈{1, ..., n-1}. 

The statements from lines 2 to 7 construct the task order 

restriction relation as described in Definition 3.2. Line 8 

assigns to each processor a task that is ready to execute. 

So, task T π(1) will be assigned to processor 1, task T π(2) 

will be assigned to processor 2, and so on. These 

allocated tasks will be removed from the local variable  

T ' (line 9). Testing whether variable T ' is empty is part 

of the termination condition of the while loop starting 

at line 11. We assume initially that the task set 𝕋 is 

feasible (line 10). Lines 12 to 16 will choose a chain of 

tasks (hence a processor) for task T. Since the tasks are 

ordered in an ascending order of their laxities, it means 

that the statements from lines 12 to 16 follow the LLF 

scheduling technique (Lemma 3.1).  



    Lines 17 to 20 handle the case when there is no chain 

C such that c(T) + c(C) ≤ d(T), then it will be subject to 

switching the task order in one of the chains which 

satisfy the task order restriction. If there is a chain C 

such that last(C) x T is in TOR(T ′ ), where x ≥ c(C -

last(C)), then it means that we can switch T and last(C). 

If Tk = last(C), it means that dT < x + cTk + cT ≤ dTk 

(Definition 3.2). The interval [0, x) is reserved to 

previous executed tasks, including Tk. Because task T 

will miss its deadline if it executed after Tk, then line 19 

of Algorithm 𝔸 switches tasks Tk and T. Then task Tk 

will be executed after T without missing its deadline 

because dT < x + cTk + cT ≤ dTk.  

    Lines 21 and 22 handle the case when there is no 

chain C such that last(C) x T is in TOR(T ′ ). In this 

case, Algorithm 𝔸 will display ‘𝔸 was unable to find a 

schedule’ and stop the while loop starting at line 11.   ■ 

 

Theorem 3.2. (complexity of Algorithm 𝔸) Let us 

consider a set of single-instance non-preemptive and 

independent tasks 𝕋 = {T1, ..., Tn} on a m = |ℙ| processor 

platform, where each task Ti = (si, ci, di), for all i ∈ {1; ..., 

n}, such that d1 ≤ ... ≤ dn. Algorithm 𝔸 has both time and 

space complexities of O(n2).      ■ 

 

Proof. The statement from line 1 can be implemented in 

O(n log n) as the optimal time complexity of sorting 

algorithms. The statements from lines 2-10 can be done 

in O(n2) time complexity. The statements from lines 11 

to 24 can be implemented in O(n ⨯ m) time complexity. 

Since m ≤ n, we conclude that the time complexity of 

Algorithm 𝔸 is O(n2). Due to a similar justification, the 

space complexity of Algorithm 𝔸 is O(n2).                   ■ 

 

The exact comparison between 𝔸-schedule and the 
EDF-schedule is subject to future research. 

 

Example 3.3. Let 𝕋3 = {T1, ..., T7} be a single instance 

and non-preemptive task set on a three-processor 

platform, ℙ = {p1, p2, p3} given by: T1 = (0, 2, 2), T2 = (0, 

7, 7), T3 = (0, 8, 9), T4 = (0, 3, 6), T5 = (0, 1, 5), T6 = (0, 

5, 12), and T7 = (0, 3, 11). Example 2.3 indicates that the 

task set 𝕋3 is neither EDF-schedulable, not LLF-

schedulable. 𝕋3 is 𝔸-schedulable because T1 executes in 

[0, 2)(p1), T2 executes in [0, 7)(p2), T3 executes in [0, 8)(p3), 

T5 executes in [2, 3)(p1), T4 executes in [3, 6)(p1), T6 

executes in [6, 11)(p1), and  T7 executes in [7, 10)(p2). The 

priority inversion between T4 and T5 was possible 

because TOR(𝕋3) = {T3  0 T5; T4  2 T5; T6  4 T7} 

(Example 2.3). Processor p1 reaches time unit of 2 

before task T4 was scheduled to be executed. Since T4  

2 T5 belongs to TOR(𝕋3) and the current time was 2, 

according to line 19 of Algorithm 𝔸, we can switch T4 

and T5 and get the previous  𝔸-schedule.       ■ 

 

Paper [14] describes a similar scheduling algorithm that 

solves the problem of finding a feasible non-preemptive 

schedule whenever one exists on M identical processors 

for a given set of processes such that each process starts 

executing after its release time and completes its 

computation before its deadline. However, the 

scheduling algorithm of [14] has the exclusion relations 

defined on ordered pairs of process segments given 

before the algorithm starts. In addition, these exclusions 

only apply for segments of an interval and their 

scheduling algorithm is exponential in the worst case as 

it is based on branch-and-bound technique. In contrast, 

Algorithm 𝔸 compute similar task order restrictions 

during the scheduling algorithm and has a polynomial 

time complexity in the worst case. 

 

IV. EXPERIMENTAL RESULTS 

We have implemented all three scheduling algorithms 

(EDF, LLF, 𝔸) in Java programming language on a 

Windows 64Mb system, having a processor of 3.3MHz 

and a memory 6GB of RAM. Table 1 shows the average 

execution time of EDF, LLF, and 𝔸 in milliseconds 

together with the answer to the feasibility question. To 

maintain its accuracy, the experiments are executed 

1000 times to take the average time. The task sets from 

Table 1 are uniformly selected from real-time 

Benchmarks of UH, SNU, and LU [10]. 

 
No #𝕋 #ℙ EDF  LLF  𝔸  

   Feas? Time Feas? Time Feas? Time 

1 4 3 Yes 0.015 Yes 

 

0.015 

 

Yes 

 

0.015 

 

2 12 4 Yes 0.040 Yes 

 

0.041 

 

Yes 

 

0.042 

 

3 6 2 Yes 0.016 

 

Yes 

 

0.018 

 

Yes 

 

0.018 

 

4 4 4 Yes 0.015 

 

Yes 

 

0.013 Yes 

 

0.013 

 

5 8 6 Yes 0.021 

 

Yes 

 

0.026 

 

Yes 

 

0.025 

 

6 24 8 Yes 0.085 

 

Yes 

 

0.074 

 

Yes 

 

0.077 

 

7 12 4 Yes 0.036 

 

Yes 

 

0.041 

 

Yes 

 

0.043 

 

8 8 8 Yes 0.022 

 

Yes 

 

0.032 

 

Yes 

 

0.035 

 

9 12 9 Yes 0.037 

 

Yes 

 

0.050 

 

Yes 

 

0.047 

 

10 36 12 Yes 0.123 

 

Yes 

 

0.097 

 

Yes 

 

0.096 

 

11 12 4 No 0.030 

 

Yes 

 

0.043 

 

Yes 

 

0.048 

 

12 6 4 No 0.017 

 

Yes 

 

0.016 

 

Yes 

 

0.018 

 

13 12 8 No 0.045 

 

Yes 

 

0.048 

 

Yes 

 

0.046 

 

14 24 8 No 0.094 

 

Yes 

 

0.080 

 

Yes 

 

0.080 

 

15 6 2 Yes 0.018 

 

No 0.018 

 

Yes 

 

0.032 

 

16 12 4 Yes 0.043 

 

No 0.042 

 

Yes 

 

0.083 

 

17 18 6 Yes 0.066 

 

No 0.056 

 

Yes 

 

0.124 

 

18 7 3 No 0.022 

 

No 0.019 

 

Yes 

 

0.037 

 

19 14 6 No 0.053 

 

No 0.054 

 

Yes 

 

0.112 

 

20 21 9 No 0.052 

 

No 0.060 

 

Yes 

 

0.139 

 

Table 1. Task set scheduling results 
 



We concluded the following five findings from Table 1: 
 
1. When all tasks are LLF and EDF schedulable, 𝔸 takes 

about the same amount of time as LLF and EDF. The 

average is as follows: 

executionTime_𝔸 0.015621216 ms 

executionTime_EDF 0.01813721 ms 

executionTime_LLF 0.015517794 ms 

2. When LLF succeeds but EDF fails, 𝔸 succeeds:  

executionTime_𝔸 0.016765054 ms 

executionTime_EDF 0.015995821 ms 

executionTime_LLF 0.01609016 ms 

3. When LLF fails and EDF succeed, 𝔸 succeeds: 

executionTime_𝔸 0.051071003 ms 

executionTime_EDF 0.031431895 ms 

executionTime_LLF 0.013447051 ms 

4. When both LLF and EDF fail, 𝔸 succeeds: 

executionTime_𝔸 0.07502317 ms 

executionTime_EDF 0.057403896 ms 

executionTime_LLF 0.018161282 ms 

5. The overall execution time average for both 

schedulable and non-schedulable task sets is: 

executionTime_ 𝔸 0.024385475 ms 

executionTime_EDF 0.015448866 ms 

executionTime_LLF 0.012151535 ms 
 

V. CONCLUSION 

When EDF and LLF cannot provide a schedule, the 

overall execution time of Algorithm 𝔸 is increased by 

about 60% compared to EDF and LLF. However, if a 

task set is LLF-schedulable (regardless whether it is 

EDF-schedulable) algorithm 𝔸 will take about the same 

time as LLF. Moreover, if a task set is EDF-schedulable 

but not LLF-schedulable, then Algorithm 𝔸 takes 60% 

more execution time than EDF on average. 
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