
A new scheduling algorithm for non-preemptive

independent tasks on a multi-processor platform

Stefan Andrei

Lamar University

Department of Computer Science

Beaumont, TX, USA

stefan.andrei@lamar.edu

Albert M.K. Cheng

University of Houston

Department of Computer Science

Houston, TX, USA

cheng@cs.uh.edu

Vlad Radulescu

Cuza University of Iasi

Department of Computer Science

Iasi, Romania

rvlad@infoiasi.ro

Sharfuddin Alam

Lamar University

Department of Computer Science

Beaumont, TX, USA

salam3@lamar.edu

Suresh Vadlakonda

Lamar University

Department of Computer Science

Beaumont, TX, USA

svadlakonda@lamar.edu

Abstract— The abort-and-restart scheme from the

Priority-based Functional Reactive Programming (PFRP)

paradigm eliminates the priority inversion problem. This

paper is similar by solving the priority inversion problem

using the task order restrictions sets of relations. One of

the core problems in real-time systems is finding a feasible

schedule for a task set on a multiprocessor platform. While

preemptive scheduling has benefited from a large number

of significant results, the non-preemptive case has still

room for improvement.

Despite the fact that the well-known EDF and LLF

scheduling techniques are optimal for preemptive

uniprocessor platform there is no known optimal

scheduling algorithm for non-preemptive task sets on a

multi-processor platform. Our paper continues our

previous works [1] and [2] by describing the experimental

results together with their findings about our alternate

scheduling method to the EDF and LLF techniques. Our

algorithm, called 𝔸, is able to schedule all considered non-

preemptive independent tasks on a multi-processor

platform, while EDF and LLF fail to sometimes provide a

feasible schedule. The experiments indicate no execution

time overhead for the cases where all the scheduling

algorithms were able to provide the schedule. However,

when EDF and LLF fail to provide a schedule, 𝔸 gives the

schedule with a 60% execution time overhead.

Keywords—scheduling algorithm, multiprocessor

platform, non-preemptive task

I. INTRODUCTION

The Priority-based Functional Reactive Programming

(PFRP) paradigm [14,15,16] is a new declarative

approach to modeling and building reactive systems.

The PFRP paradigm intends to improve the

programming of real-time embedded controllers,

typically programmed using C programming language or

assembly language. PFRP programs are written as a

collection of functions (hence, stateless). The PFRP

compiler generates resource-bounded C code that

comprises in a group of event handlers, where each

event handler is responsible for a single interrupt or

event source. The semantics of PFRP requires that each

event handler executes atomically. This requirement

facilitates reasoning about PFRP programs and thus is a

desirable feature of the language. However, this means

that a lower-priority task is aborted when a higher-

priority task arrives. The task is restarted once the higher

priority task completes. By its nature, PFRP, with its

abort-and-restart scheme, eliminates the priority

inversion problem. This paper is similar by solving the

priority inversion problem using the task order

restrictions sets of relations (Section 3).

 Finding optimal feasible schedules of task sets under

various constraints has always been an important

research area in the real-time embedded systems

community. Stankovic, Spuri, Di Natale, and Butazzo

investigated the boundary between polynomial and NP-

hard scheduling problems [3]. There are only few

subclasses of the general scheduling problem that have

polynomial-time complexity optimal algorithms.

Dertouzos showed that the Earliest Deadline First (EDF)

algorithm has polynomial complexity and can solve the

uniprocessor preemptive (i.e., a task is preemptive if its

execution can be interrupted and resumed later)

scheduling problem [4]. Mok discovered another optimal

algorithm with polynomial complexity for the same

subclass, that is, the Least Laxity First (LLF) algorithm

[5]. Another polynomial algorithm was found by Lawler

in 1983 for non-preemptive (i.e., a task is non-

preemptive if its execution cannot be interrupted) unit

computation time tasks with arbitrary start time [6].

However, according to Graham, Lawler, Lenstra and

Kan [7], when dealing with non-preemptive and non-

unit computation time tasks, the scheduling problem

becomes NP-hard.

 Scheduling non-preemptive tasks has received less

attention in the real-time embedded systems community

than preemptive scheduling. Despite this, non-

preemptive scheduling is widely used in industry [8].

For example, non-preemptive scheduling algorithms

have lower overhead than the corresponding preemptive

mailto:stefan.andrei@lamar.edu
mailto:cheng@cs.uh.edu
mailto:salam3@lamar.edu
mailto:svadlakonda@lamar.edu

scheduling algorithms because of the inter-task

interference caused by caching and pipelining. The

benefits of using non-preemptive tasks versus

preemptive tasks are multiple on multiprocessor

platforms, since the task migration overhead is higher

and difficult to predict. This problem has less negative

impact on non-preemptive scheduling because each task

instance runs until its completion on the same processor

and task migration might occur at task instance

boundaries.

 There exist many models to define a task and a job.

For simplicity, we consider only single-instance tasks,

that is, without considering their periods. That is why,

we use throughout this paper the terms task and job

interchangeably. In this paper, we consider that a task T

is denoted by (s, c, d) and characterized by three

parameters: s is called the start time (also known as the

release time), c is called the computation time (also

known as the worst-case execution time), and d is called

the deadline. The meaning is that task T can be executed

after s time units, completing a total of c time units by

the deadline d. For simplicity, we consider the tasks to

be single instance. Hence there is no need to consider the

tasks’ periods. In fact, the results and examples from this

paper can be extended to periodic or sporadic tasks.

Without loss of generality, we assume that s, c, and d are

non-negative integers, although a task may have rational

values for some parameters when needed. Given a task

set 𝕋 = {Ƭ1, ..., Ƭn}, 𝕋 is called schedulable by a

scheduling algorithm if all the timing constraints of all

tasks in 𝕋 are met. The scheduling algorithm is called

optimal if whenever it cannot find a schedule, then no

other scheduling algorithms can [9].

 Our scheduling algorithm, called 𝔸, is able to provide

feasible schedules for all task sets for which the EDF

and LLF methods identified a feasible schedule. In fact,

for many task sets for which the EDF and LLF methods

could not identify a feasible schedule, Algorithm 𝔸, was

able to provide feasible schedule. This is supported by

Lemma 3.1 and the experimental results section, where

we provide a more accurate comparison between 𝔸 with

EDF or LLF.

 The remainder of this paper is organized as follows.

The next section describes the notations, definitions, and

some examples needed for the scheduling problem, in

particular EDF, LLF, and Algorithm 𝔸. Section III

presents 𝔸, followed by Section IV, called Experimental

Results. Conclusion and References end the paper.

II. PRELIMINARIES

Our paper considers the multiprocessor platform,

independent non-preemptive tasks, and no shared

resources, overhead, or context-switching time. Similar

to the approach from [9], we assume that the task

constraints are known in advance, such as deadlines,

computation times, and start times.

 A time interval is a set of time stamps with the

property that any time stamp lying between two time

stamps in the set is also included in the set. For example,

[s, e) denotes a time interval that is left-closed and right-

open. We say that task Ƭ executes in the time interval [s,

e)(p) if T is ready to execute on processor p at time s and

finishes its execution just before time e, allowing the

next task to start its execution on processor p at time e.

The set with no elements is called the empty set and is

denoted by ∅. We say that [s, e)(p1) ∩ [s′, e′) (p2) = ∅ if and

only if either p1 ≠ p2 or [s, e) ∩ [s′, e′) = ∅ in the

mathematical sense (symbol ∩ means the interval

intersection). We consider in our paper that the

multiprocessor platform is simply denoted as ℙ = {p1, ...,

pm}, where p1, ..., pm are processors. In this paper, we

consider m < n, otherwise the scheduling problem

would be trivial. For a finite set V, we denote by |V | the

number of elements of V. We consider in this paper a

task set denoted as 𝕋 given by {Ƭ1, ..., Ƭn}, where each

task Ƭi is represented by (si, ci, di). Since each task has a

deadline, the scheduling problem for the multiprocessor

environment becomes difficult [10]. We say that the task

set 𝕋 is schedulable on the multiprocessor platform ℙ if

there exists a schedule for each task Ti such that Ti

executes in interval [s, e)(p), that is, task Ti executes on

processor p in the time interval from time s to time e,

and satisfies the following two properties:

1) si ≤ s < e ≤ di and e – s = ci;
2) there is no other task T’ executed by processor p

within interval [s, e).

 Given a task set 𝕋 = {T1, ..., Tn}, where each task Ti is

given by (si, ci, di) for any i ∈ {1, ..., n}, the EDF

scheduling means the task with the earliest deadline, that

is, di has the highest priority. The LLF scheduling means

the task with the smallest laxity, that is, li = di – ci - si

has the highest priority. The definition of laxity for

preemptive tasks includes the time instance because a

task’s priority may change during its execution.

However, due to the fact that the tasks are non-

preemptive, the tasks’ priorities do not change during

their execution.

 The following example shows a task set for which the

EDF method fails to provide a schedule on a four

processor platform.

Example 2.1. Let 𝕋1 = {T1, ..., T12} be a single instance

and non-preemptive task set given by: T1 = (0, 1, 1), T2 =

(0, 1, 2), T3 = (0, 2, 3), T4 = (0, 2, 3), T5 = (0, 2, 4), T6 =

(0, 2, 4), T7 = (0, 4, 5), T8 = (0, 1, 5), T9 = (0, 1, 5), T10 =

(0, 1, 5), T11 = (0, 2, 5) and T12 = (0, 1, 5). The deadlines

are sorted increasingly. The EDF method fails to provide

a feasible schedule for 𝕋1 on a four-processor platform,

ℙ = {p1, p2, p3, p4}. This is because tasks T1, T2, T3, and

T4 will be chosen to be first executed on processors p1,

p2, p3, and p4, respectively. Then, T5 and T6 will be

scheduled for processors p1 and p2. Therefore, task T7

will miss its deadline because all the processors have left

less than 3 available time units to execute.

 However, 𝕋1 is LLF-schedulable because T1 executes

in [0, 1)(p1), T2 executes in [0, 1)(p2), T3 executes in [0,

2)(p3), T4 executes in [0, 2)(p4), T7 executes in [1, 5)(p1), T5

executes in [1, 3)(p2), T6 executes in [2, 4)(p3), T11

executes in [2, 4)(p4), T8 executes in [3, 4)(p2), T9 executes

in [4, 5)(p2), T10 executes in [4, 5)(p3), and T12 executes in

[4, 5)(p4). ■

The following example shows a task set for which the

LLF method fails to provide a schedule on a two

processor platform.

Example 2.2. Let 𝕋2 = {T1, ..., T6} be a single instance

and non-preemptive task set on a two-processor platform

ℙ = {p1, p2} given by: T1 = (0, 2, 2), T2 = (0, 2, 2), T3 =

(0, 3, 6), T4 = (0, 3, 6), T5 = (0, 1, 5), and T6 = (0, 1, 5).

The laxities are sorted increasingly, namely l1 = 0, l2 = 0,

l3 = 3, l4 = 3, l5 = 4, and l6 = 4. The LLF method fails to

provide a feasible schedule for 𝕋2 on a two-processor

platform. According to the LLF scheduling strategy,

tasks T1 and T2 will be chosen to be first executed on

processors 1 and 2, respectively. Then, T3 and T4 will be

scheduled on processors p1 and p2, respectively. As a

result of the LLF strategy, both tasks T5 and T6 cannot be

scheduled because they will miss their deadline of 5.

Hence, the LLF scheduling method fails to provide a

feasible schedule for the above task set.

 However, 𝕋2 is EDF schedulable because T1 executes

in [0, 2)(p1), T2 executes in [0, 2)(p2), T5 executes in [2,

3)(p1), T6 executes in [2, 3)(p2), T3 executes in [3, 6)(p1),

and T4 executes in [3, 6)(p2). ■

The next example shows a task set that is neither LLF

schedulable nor EDF schedulable on a two processor

platform.

Example 2.3. Let 𝕋3 = {T1, ..., T7} be a single instance

and non-preemptive task set on a three-processor

platform, ℙ = {p1, p2, p3} given by: T1 = (0, 2, 2), T2 = (0,

7, 7), T3 = (0, 8, 9), T4 = (0, 3, 6), T5 = (0, 1, 5), T6 = (0,

5, 12), and T7 = (0, 3, 11). The laxities are sorted in an

increasing order. Hence the LLF scheduler will first

assign tasks T1, T2, and T3 to be executed on processors

1, 2, and 3, respectively. Then, task T4 will be scheduled

for processor 1. Hence, task T5 will miss its deadline.

 By following the EDF scheduling method, T1, T5, and

T4 will be assigned to processors 1, 2, and 3,

respectively. Hence, task T2 will miss its deadline.

 In conclusion, the task set 𝕋3 is neither LLF-

schedulable nor EDF-schedulable. ■

III. OUR SCHEDULING ALGORITHM 𝔸

We describe Algorithm 𝔸 that takes a single-instance

non-preemptive and independent task set and returns a

feasible schedule. It may happen however that the task

set to be feasible, but Algorithm 𝔸 would not be able to

provide a feasible schedule. We define first the ordering

relation for the task sets. This ordering relation is

actually based on task laxities.

Definition 3.1. Given two tasks Ƭ1 = (s1, c1, d1) and Ƭ2 =

(s2, c2, d2), we say that Ƭ1 < Ƭ2 if d1 - c1- s1 < d2 - c2 - s1

or (d1 - c1 -s1 = d2 -c2 - s1 and d1 < d2). We say that Ƭ1 ≤

Ƭ2 if Ƭ1< Ƭ2 or Ƭ1= Ƭ2. ■

Example 3.1. Given a task set 𝕋 = {Ƭ1, Ƭ2, Ƭ3} where Ƭ1

= (0, 1, 3), Ƭ2 = (0, 2, 5) and Ƭ3 = (0, 2, 4), we have Ƭ1 ≤

Ƭ2, Ƭ1 ≤ Ƭ3 and Ƭ3 ≤ Ƭ2. ■

Definition 3.2. Given two tasks Ƭ1 = (s1, c1, d1) and Ƭ2 =

(s2, c2, d2) such that Ƭ1 < Ƭ2, we say that Ƭ1  x Ƭ2 if d2 <

x + c1 + c2 ≤ d1, s1 ≤ x and s2 ≤ x. For a task set 𝕋 = {T1,

..., Tn}, we define the set of task order restrictions

relation TOR(𝕋) = {Ƭi  x Ƭj | where i, j ∊ {1, 2, …, n}}.

 ■

Definition 3.2 provides a way of handling the situations

where the main ordering relation cannot find a feasible

schedule. For two tasks T1 and T2, with T1 < T2, the first

attempt is always to schedule T1 and then T2.

 However, if x (or more) time units have already been

executed on processor p and T1  x T2, it is no longer

possible to schedule task T1 and then task T2 on

processor p, simply because the latter will miss its

deadline.

 Nevertheless, if d2 < d1, it is sometimes possible that

T2 cannot meet its deadline with this scheduling order,

but T1 and T2 can both meet their deadlines if T2 is

scheduled first.

 On the other hand, the task order restriction does not

forbid other possible scheduling decisions:

1. It may be possible to schedule task T1 and then task

T2 on the same processor p, if the amount of time

previously executed on p is lower than x;

2. It may also be possible to schedule task T1 and then

task T2, even after moment x, on different

processors;

3. More important for our goal, at moment x, it is

definitely possible to schedule task T2 and then task

T1 on the same processor, such that none of them

misses its deadline.

In fact, the task order restriction relation was specifically

introduced to handle a special case: a task T1 has already

been scheduled on a processor, another task T2 cannot be

scheduled right after T1 on the same processor, but

switching the order of the two tasks allows both of them

to meet their deadlines.

 It is easy to see that, given two tasks T1 and T2 such

that T1 ≤ T2, if T1  x T2, then the values of x for which

the restriction holds belong to the interval (d2 − c1 − c2,

d1 − c1 − c2].

 We note that both ordering relations defined above, <

and  x, are concerned with comparing and switching

tasks on the same processor. Example 3.2 describe how

to construct and use the ordering relation  x for a task

set.

Example 3.2. Let us consider the task set from Example

2.3. The laxities li = di − ci - si for all i ∈ {1, …,7} are, in

order, l1 = 0, l2 = 0, l3 = 1, l4 = 3, l5 = 4, l6 = 7, and l7 = 8.

Hence, the task set is already sorted in an increasing

order upon their laxities. According to Definition 3.2,

TOR(𝕋3) = {T3  0 T5; T4  2 T5; T6  4 T7}. However, it

may be possible to have more than just one value. For

example, given T1 = (0, 6, 13) and T2 = (0, 3, 11), it is

clear that T1 ≤ T2. In order to investigate what values x

can get, we consider the inequality from Definition 3.2,

that is, 11 < x + 6 + 3 ≤ 13: Hence, x may take two

possible values, namely x = 3 and x = 4. ■

The ordering relations “≤” and “ x” between tasks will

be used in Algorithm 𝔸. In addition, we consider a chain

of tasks C as [T1, ..., Tk], a list of tasks from the given

task set 𝕋. We denote the computation of the chain c(C)

as c(T1)+ ... +c(Tk) and last(C) as Tk. We denote by C

−last(C) the chain C obtained after removing its last

task. We denote by C + T the chain obtained by

concatenating C and task T. Algorithm 𝔸 tries to

generate a schedule for 𝕋 on a multiprocessor platform.

It can be viewed as a beneficial combination of two

“complementary” scheduling techniques, LLF and EDF.

Algorithm 𝔸 below (extended from [1] and [2]) will be

able to generate schedules for all task sets from

Examples 2.1, 2.2, and 2.3.

Algorithm 𝔸
Input: A set of single-instance non-preemptive and

independent tasks 𝕋 = {T1, ..., Tn} on a m = |ℙ| processor

platform, where each task Ti = (si, ci, di), for all i ∈ {1; ...,

n}, such that d1 ≤ ... ≤ dn.

Output: A schedule for the task set 𝕋 on a m-processor

platform. Otherwise, display that 𝕋 is infeasible using

𝔸-algorithm.

1. Sort lexicographically tasks T1, .., Tn under di - ci - si as

a primary key and di as a second key. The obtained list is

T ′ = [Tπ(1), ..., Tπ(n)], where π is the corresponding

permutation such that Tπ(i) ≤ Tπ(i+1) for all i ∈{1, .., n-1};

2. TOR(T ′) = Ø;

3. for (i =1; i < n; i++)

4. if (d(Tπ(i)) - c(Tπ(i)) - s(Tπ(i)) ≥ 0)

5. for (j = i + 1; j ≤ n; j++)

6. if (∃x ≥ 0, d(T π(j)) < x + c(Tπ(i)) + c(Tπ(j)) ≤d(Tπ(i)))

7. TOR(T′)=TOR(T′) ∪ {T π(i)  x T π(j)};

8. Choose T π(1), ..., T π(m) as the set of initial tasks for the

first p chains;

9. Remove T π(1),..., T π(m) from the list T ';

10. feasible = true;

11. while (T ′ is a non-empty set && feasible) {

12. Let T be the first task from T
 ';

13. Choose a chain C such that c(T) + c(C) ≤ d(T);

14. if (such a chain exists) {

15. Remove T from T ′;

16. Add T to chain C;

 }
 else {

17. Choose a chain C such that last(C) x T is in

 TOR(T ′), where x ≥ c(C -last(C));

18. if (such a chain C exists) {

19. Add T to chain C, but switch T and last(C);

20. Remove T from T ′;
 }
 else {

21. print ‘𝔸 was unable to find a schedule’;

22. feasible = false;
 }

 }

23. if (feasible) {

24. print ‘𝕋 is feasible and its schedule’;
 } } }

Lemma 3.1. If a task set 𝕋 is LLF-schedulable, then

Algorithm 𝔸 will produce the same schedule. ■

Proof. If the input task set 𝕋 is LLF-schedulable, then

the statements from lines 17 to 22 will never be executed

because it will always be a chain such that c(T) + c(C) ≤

d(T). Hence, the schedule provided by Algorithm 𝔸 will

be exactly the same as the LLF schedule. ■

Theorem 3.1. (correctness of Algorithm 𝔸) Let us

consider a set of single-instance non-preemptive and

independent tasks 𝕋 = {T1, ..., Tn} on a m = |ℙ| processor

platform, where each task Ti = (si, ci, di), for all i ∈ {1, ...,

n}, such that d1 ≤ ... ≤ dn.

 Upon its execution, Algorithm 𝔸 will produce a

correct schedule for the task set 𝕋 on a p-processor

platform. Otherwise, display that 𝔸 was unable to find a

feasible schedule. ■

Proof. Line 1 sorts the tasks according to their laxities,

as stated in the LLF scheduling technique. Obviously,

the tasks may be reordered from the lowest laxity (hence

the highest priority) to the highest laxity (so the lowest

priority) as described by the permutation π. Hence, the

obtained list is T ′ = [Tπ(1), ..., Tπ(n)], where π is the

corresponding permutation such that Tπ(i) ≤ Tπ(i+1) for all i

∈{1, ..., n-1}.

The statements from lines 2 to 7 construct the task order

restriction relation as described in Definition 3.2. Line 8

assigns to each processor a task that is ready to execute.

So, task T π(1) will be assigned to processor 1, task T π(2)

will be assigned to processor 2, and so on. These

allocated tasks will be removed from the local variable

T ' (line 9). Testing whether variable T ' is empty is part

of the termination condition of the while loop starting

at line 11. We assume initially that the task set 𝕋 is

feasible (line 10). Lines 12 to 16 will choose a chain of

tasks (hence a processor) for task T. Since the tasks are

ordered in an ascending order of their laxities, it means

that the statements from lines 12 to 16 follow the LLF

scheduling technique (Lemma 3.1).

 Lines 17 to 20 handle the case when there is no chain

C such that c(T) + c(C) ≤ d(T), then it will be subject to

switching the task order in one of the chains which

satisfy the task order restriction. If there is a chain C

such that last(C) x T is in TOR(T ′), where x ≥ c(C -

last(C)), then it means that we can switch T and last(C).

If Tk = last(C), it means that dT < x + cTk + cT ≤ dTk

(Definition 3.2). The interval [0, x) is reserved to

previous executed tasks, including Tk. Because task T

will miss its deadline if it executed after Tk, then line 19

of Algorithm 𝔸 switches tasks Tk and T. Then task Tk

will be executed after T without missing its deadline

because dT < x + cTk + cT ≤ dTk.

 Lines 21 and 22 handle the case when there is no

chain C such that last(C) x T is in TOR(T ′). In this

case, Algorithm 𝔸 will display ‘𝔸 was unable to find a

schedule’ and stop the while loop starting at line 11. ■

Theorem 3.2. (complexity of Algorithm 𝔸) Let us

consider a set of single-instance non-preemptive and

independent tasks 𝕋 = {T1, ..., Tn} on a m = |ℙ| processor

platform, where each task Ti = (si, ci, di), for all i ∈ {1; ...,

n}, such that d1 ≤ ... ≤ dn. Algorithm 𝔸 has both time and

space complexities of O(n2). ■

Proof. The statement from line 1 can be implemented in

O(n log n) as the optimal time complexity of sorting

algorithms. The statements from lines 2-10 can be done

in O(n2) time complexity. The statements from lines 11

to 24 can be implemented in O(n ⨯ m) time complexity.

Since m ≤ n, we conclude that the time complexity of

Algorithm 𝔸 is O(n2). Due to a similar justification, the

space complexity of Algorithm 𝔸 is O(n2). ■

The exact comparison between 𝔸-schedule and the
EDF-schedule is subject to future research.

Example 3.3. Let 𝕋3 = {T1, ..., T7} be a single instance

and non-preemptive task set on a three-processor

platform, ℙ = {p1, p2, p3} given by: T1 = (0, 2, 2), T2 = (0,

7, 7), T3 = (0, 8, 9), T4 = (0, 3, 6), T5 = (0, 1, 5), T6 = (0,

5, 12), and T7 = (0, 3, 11). Example 2.3 indicates that the

task set 𝕋3 is neither EDF-schedulable, not LLF-

schedulable. 𝕋3 is 𝔸-schedulable because T1 executes in

[0, 2)(p1), T2 executes in [0, 7)(p2), T3 executes in [0, 8)(p3),

T5 executes in [2, 3)(p1), T4 executes in [3, 6)(p1), T6

executes in [6, 11)(p1), and T7 executes in [7, 10)(p2). The

priority inversion between T4 and T5 was possible

because TOR(𝕋3) = {T3  0 T5; T4  2 T5; T6  4 T7}

(Example 2.3). Processor p1 reaches time unit of 2

before task T4 was scheduled to be executed. Since T4 

2 T5 belongs to TOR(𝕋3) and the current time was 2,

according to line 19 of Algorithm 𝔸, we can switch T4

and T5 and get the previous 𝔸-schedule. ■

Paper [14] describes a similar scheduling algorithm that

solves the problem of finding a feasible non-preemptive

schedule whenever one exists on M identical processors

for a given set of processes such that each process starts

executing after its release time and completes its

computation before its deadline. However, the

scheduling algorithm of [14] has the exclusion relations

defined on ordered pairs of process segments given

before the algorithm starts. In addition, these exclusions

only apply for segments of an interval and their

scheduling algorithm is exponential in the worst case as

it is based on branch-and-bound technique. In contrast,

Algorithm 𝔸 compute similar task order restrictions

during the scheduling algorithm and has a polynomial

time complexity in the worst case.

IV. EXPERIMENTAL RESULTS

We have implemented all three scheduling algorithms

(EDF, LLF, 𝔸) in Java programming language on a

Windows 64Mb system, having a processor of 3.3MHz

and a memory 6GB of RAM. Table 1 shows the average

execution time of EDF, LLF, and 𝔸 in milliseconds

together with the answer to the feasibility question. To

maintain its accuracy, the experiments are executed

1000 times to take the average time. The task sets from

Table 1 are uniformly selected from real-time

Benchmarks of UH, SNU, and LU [10].

No #𝕋 #ℙ EDF LLF 𝔸

 Feas? Time Feas? Time Feas? Time

1 4 3 Yes 0.015 Yes

0.015

Yes

0.015

2 12 4 Yes 0.040 Yes

0.041

Yes

0.042

3 6 2 Yes 0.016

Yes

0.018

Yes

0.018

4 4 4 Yes 0.015

Yes

0.013 Yes

0.013

5 8 6 Yes 0.021

Yes

0.026

Yes

0.025

6 24 8 Yes 0.085

Yes

0.074

Yes

0.077

7 12 4 Yes 0.036

Yes

0.041

Yes

0.043

8 8 8 Yes 0.022

Yes

0.032

Yes

0.035

9 12 9 Yes 0.037

Yes

0.050

Yes

0.047

10 36 12 Yes 0.123

Yes

0.097

Yes

0.096

11 12 4 No 0.030

Yes

0.043

Yes

0.048

12 6 4 No 0.017

Yes

0.016

Yes

0.018

13 12 8 No 0.045

Yes

0.048

Yes

0.046

14 24 8 No 0.094

Yes

0.080

Yes

0.080

15 6 2 Yes 0.018

No 0.018

Yes

0.032

16 12 4 Yes 0.043

No 0.042

Yes

0.083

17 18 6 Yes 0.066

No 0.056

Yes

0.124

18 7 3 No 0.022

No 0.019

Yes

0.037

19 14 6 No 0.053

No 0.054

Yes

0.112

20 21 9 No 0.052

No 0.060

Yes

0.139

Table 1. Task set scheduling results

We concluded the following five findings from Table 1:

1. When all tasks are LLF and EDF schedulable, 𝔸 takes

about the same amount of time as LLF and EDF. The

average is as follows:

executionTime_𝔸 0.015621216 ms

executionTime_EDF 0.01813721 ms

executionTime_LLF 0.015517794 ms

2. When LLF succeeds but EDF fails, 𝔸 succeeds:

executionTime_𝔸 0.016765054 ms

executionTime_EDF 0.015995821 ms

executionTime_LLF 0.01609016 ms

3. When LLF fails and EDF succeed, 𝔸 succeeds:

executionTime_𝔸 0.051071003 ms

executionTime_EDF 0.031431895 ms

executionTime_LLF 0.013447051 ms

4. When both LLF and EDF fail, 𝔸 succeeds:

executionTime_𝔸 0.07502317 ms

executionTime_EDF 0.057403896 ms

executionTime_LLF 0.018161282 ms

5. The overall execution time average for both

schedulable and non-schedulable task sets is:

executionTime_ 𝔸 0.024385475 ms

executionTime_EDF 0.015448866 ms

executionTime_LLF 0.012151535 ms

V. CONCLUSION

When EDF and LLF cannot provide a schedule, the

overall execution time of Algorithm 𝔸 is increased by

about 60% compared to EDF and LLF. However, if a

task set is LLF-schedulable (regardless whether it is

EDF-schedulable) algorithm 𝔸 will take about the same

time as LLF. Moreover, if a task set is EDF-schedulable

but not LLF-schedulable, then Algorithm 𝔸 takes 60%

more execution time than EDF on average.

REFERENCES

[1] Ş. Andrei, A. Cheng, G. Grigoras, and V. Radulescu.

An Efficient Scheduling Algorithm for the

Multiprocessor Platform. In Proceedings of 12th

International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC’10),

pages 245–252, IEEE Computer Society, Timisoara,

Romania, 2010.

[2] Ş. Andrei, A. Cheng, and V. Radulescu. An

Improved Upper-bound Algorithm for Non-preemptive

Task Scheduling. In Proceedings of 12th International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC’15), pages 245–252,

IEEE Computer Society, Timisoara, Romania, 2015.

[3] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C.

Buttazzo. Implications of classical scheduling results for

real-time systems. Computer, 28(6):16–25, 1995.

[4] M. L. Dertouzos. Control robotics: The procedural

control of physical processes. Information Processing,

74:807–813, 1974.

[5] A. K. Mok. Fundamental design problems of

distributed systems for the hard-real-time environment.

Technical report, Massachusetts Institute of Technology,

Cambridge, MA, USA, 1983.

 [6] E. L. Lawler. Recent results in the theory of

machine scheduling. Mathematical Programming: The

State of the Art. in M. Grtchel, A. Bachem, B. Korte

(Eds.), pages 202–234, 1983.

[7] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.

G. R. Kan. Optimization and approximation in

deterministic sequencing and scheduling: A survey.

Annals of Discrete Mathematics, 5:287–326, 1979.

[8] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-

preemptive scheduling of periodic and sporadic tasks. In

Proceedings of the 12th Real-Time Systems Symposium,

pages 129–139. IEEE Computer Society, 1991.

[9] A. M. K. Cheng. Real-time systems. Scheduling,

Analysis, and Verification. Wiley-Interscience, U. S. A.,

2002.

[10] ***: Benchmark of real-time embedded systems

tasks, available online at

galaxy.lamar.edu/~sandrei/taskSetsBenchmark.zip

[11] J. Ras and A.M.K. Cheng. Response Time Analysis

for the Abort and-Restart Task Handlers of the Priority-

Based Functional Reactive Programming (P-FRP)

Paradigm. In IEEE International Conference on

Embedded and Real-Time Computing Systems and

Applications, pages 305-314, August 2009.

[12] J. Ras and A.M.K. Cheng. Response Time Analysis

of the Abort – and Restart Model under Symmetric

Multiprocessing. In Proceedings CIT, pages 1954-1961,

2010.

[13] Hing Choi Wong. Schedulability Analysis for the

Abort-and-Restart Model, Doctor of Philosophy Thesis,

University of York, 2014

[14] Jia Xu, Multiprocessor Scheduling of Processes

with Release Times, Deadlines, Precedence, and

Exclusion Relations, IEEE Trans. Software Eng., 19 (2):

139-154 (1993)

