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Abstract. With the growing prevalence of multi-core architectures, parallel parsing has been an important subject of 
research. Lam, Ding, and Liu claim in 2008 that among all important phases of XML (e.g. parsing, access, 
modification, and serialization), parsing is the most time-consuming one. Many parallel parsing algorithms have 
been created to improve the traditional sequential parsing algorithm. In this paper, we present a unique parallel 
parsing algorithm based on the bidirectional parsing approach described by Stefan Andrei in 2009 [1]. The algorithm 
takes full advantage of the multiprocessor architecture, and, as our experimental data shows, offers a significant 
improvement of the parsing speed versus the sequential parsing algorithms. 

1. Introduction 
 

Parsing has been a subject of extensive research since the 70s. It is an important part of every 
compiler, and as most of the programming languages are subject to the compilation phase, the 
importance of parsing cannot be overlooked. Parsing also has applications in other areas of 
computer science, such as natural language processing, speech recognition, translations to other 
languages, automatic error correction, and so on. Lam, Ding, and Liu claim that among all 
important phases of XML (e.g. parsing, access, modification, and serialization), parsing is the 
most time-consuming one [9]. 

There are two types of parsers: top-down and bottom-up. A top-down parser begins to process 
the input looking at the starting production, then examines the productions immediately derived 
from the starting one, then looks at the productions immediately derived from the ones derived 
from the starting production, and so on, recursively. Another way to describe top-down and 
bottom-up parsing in comparison to each other is representing a context-free grammar as a tree 
structure. The root of the said tree would be the grammar’s starting production, while the leaf 
nodes would be terminals. The Left-to-right Leftmost parsing, usually abbreviated as LL, and the 
Right-to-left Rightmost parsing, dubbed RR, are examples of top-down parsing methods [4]. 
Left-to-right, or right-to-left, means the direction of parsing the input word, and leftmost, or 
rightmost, means the directions of processing the particular grammar rules. LL and RR parsers 
are usually coded by hand, with a few exclusions. ANTLR, short for ANother Tool for Language 
Recognition, is an example of an LL parser generator. Bottom-up parsers are an exact opposite 
of the top-down. A bottom-up parser identifies the most basic units, and works its way up to the 
starting production. The Left-to-right Rightmost parsing, or LR [3], and the Right-to-left 
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Leftmost parsing or RL [2], represent two general ways to use this approach. Bottom-up parsing 
methods are more complex than top-down parsing, and ought to be described in greater detail.  

LR(0) and RL(0) parsers are the most basic type, which can be represented by a simple state-
transition machine with input and output tapes. Each state of this machine is a collection of 
grammar productions, with a dot on its right hand side indicating which tokens of that production 
have been recognized by the grammar. Each of the machine’s transitions would be one of the 
tokens. The process of LR(0) or RL(0) parsing may be described as examining the input 
symbols, comparing them to the production rules’ right hand sides, and replacing the matched 
sets of symbols with the respective production’s left hand side, until the starting symbol has been 
derived in this way. The state transition machine emulates that as taking a state transition which 
corresponds to the currently examined input symbol, and performing one of the following 
actions: shift, which consists of copying the examined symbol to the output tape; reduce, which 
removes x symbols from the output tape (where x = length of a certain production’s right hand 
side), and copies the left hand side of that production to the output; accept, which designates a 
successful end of the parsing; and reject, which signals that the examined input word contains an 
invalid combination of input tokens. 

LR(1) and RL(1) are an improved version of LR(0) and RL(0). They offer more flexibility and 
are able to parse more languages. This is achieved by introducing a lookahead – a terminal that 
could precede, for RL, or follow, in case of LR, the particular rule’s left hand side token in the 
input word. The parenthesized one beside the grammar name represents the number of lookahead 
terminals. LR(1) and RL(1) contain much more states than the zero-lookahead versions – for 
each of the lookaheads, a new production needs to be introduced into the automaton, often 
leading to the creation of new states. A typical RL(1) item looks like this (Figure 1): 

Figure 1. An RL(1) item. 

Figure 1 shows an item for the production B → a X e, where the terminal ‘e’ has already been 
processed, and ‘a’ is a lookahead terminal that might precede X. 

LALR(1) and LARL(1), usually abbreviated as LALR or LARL, where LA stands for 
“lookahead”, were designed to retain the RL(1) and LR(1) grammars’ flexibility, but without 
having to create bulky automata with an unnecessarily large number of states. In LALR and 
LARL grammars, the states that contain identical productions that differ only in lookaheads are 
merged. All the transitions of the merged states are retained – if a grammar holds to the LALR 



properties, those transitions would lead to the states that would also be merged. An LARL parser 
can be represented by a deterministic pushdown automaton. This imposes some limits on which 
languages can be parsed in a LALR or LARL way – meaning, only the languages with a context-
free property. For example, natural languages cannot be parsed that way, but many of their 
unambiguous parts can be [12]. 

A context-free grammar consists of a set of terminals, a set of nonterminals (including a start 
symbol), and a set of productions. Terminals are the literal characters that can appear in the 
inputs to or outputs from the production rules of a formal grammar and that cannot be broken 
down into "smaller" units. In the practical applications, terminals are the tokens of which the 
input word, that is to be parsed by the grammar. Nonterminals are the symbols used to represent 
terminals and other nonterminals in the grammar productions. The latter are the body of the 
grammar, consisting of the left hand side, which is always a single nonterminal, and the right 
hand side, which can consist of one to any finite number of terminals, nonterminals, or both, or a 
symbol that represents null word. A word is null (also known as empty) if its length is zero. 
Productions link terminals to nonterminals, and nonterminals to each other and the start symbol 
[11]. 

The context-free language this research refers to is the Unified Modeling Language (UML). It is 
a general-purpose modeling language in the field of object-oriented software engineering. The 
standard was managed and created by the employees of the Rational Software Corporation: Ivar 
Jacobson, Grady Booch, and James Rumbaugh. UML combines techniques from data modeling, 
business modeling, object modeling, and component modeling. It can be used with all processes, 
throughout the software development life cycle, and across different implementation 
technologies [10]. UML parsing has possible uses in reverse software engineering. 

Sequential parsing, no matter the type or method, has always left room for improving its 
efficiency. Its time complexity was O(n+|G|) in the very best case, with n being a number of 
tokens in the word, and |G| being the number of symbols in the grammar, or its size. With the 
introduction of multi-core processors, there have been many attempts to introduce parallelism to 
the process of parsing. The problem here is in the splitting of an input word into chunks to parse 
them in parallel. If done arbitrarily, the finite state machine would fail to parse most of those 
chunks - it always starts the parsing process in state 0, while the appropriate state for properly 
parsing most of the chunks would be different.  

One recent static parallel parser for XML was described by Wei Lu et al. in their work “A 
Parallel Approach to XML Parsing”. Their parser solves the splitting problem by pre-parsing the 
document to create its “skeleton” structure, which divides it into sets of tags corresponding to the 
certain subsets of the grammar. When starting the parallel parsing process, the finite state 
machine starts with the state corresponding to a particular grammar subset. Compared to the 
sequential parsing, this approach involves a considerable amount of overhead because of the 
preprocessing, but still offers a significant increase in parsing speed [5]. 



Another related approach to the parallel parsing of XML documents was described by Yu Wu, Qi 
Zhang, Zhiqiang Yu, and Jianhui Li in their work “A Hybrid Parallel Processing for XML 
Parsing and Schema Validation”. Their approach avoids any pre-processing overhead by 
introducing a notion of speculative parsing. A speculative parser treats each chunk as a separate 
document, and processes it starting with the first opening tag. All the segments of the chunks that 
fall out of the XML document structure, like an unresolved opening tag, are grouped by type and 
put onto respective queues, and resolved after the parallel phase of processing is complete. This 
approach lessens the amount of overhead by limiting it to the less resource-consuming post-
processing [6]. 

Another type of a parallel parser was described in “Parallel Parsing-based Reverse Engineering” 
[1]. The author presented a bidirectional parallel parser, which, using an RL and an LR parsers 
equivalent to each other, parsed the input word in parallel starting simultaneously in the 
beginning of the input, and at the end. The workability of creating both an LR and an RL parser 
from one grammar that holds to the LR or RL property, and the complete equivalence of them to 
each other was proved in [2]. The two parsers stop processing the word nondeterministically, by 
halting when all of the input words have been consumed. This is also described in detail in [1]. 
This approach avoids the word-splitting problem entirely, but does not make use of more than 
two processors.  

Motivation. This paper explores the effectiveness of combining bidirectional parallel parsing 
with splitting a document into statically defined sets of tokens and processing them in parallel. 
The potential increase in efficiency of parsing after using multiple bidirectional parsers in 
parallel is investigated. A Java implementation of different parsing algorithms is created to 
evaluate the performance of parallel bidirectional parsing. 

Structure of the paper. Section 2 explains the notations and grammar used. Section 3 provides 
the description of the implementation and the way it operates, and gives the examples of 
execution. Section 4 gives the experimental results. Conclusion and Future Work end this paper. 

2. Preliminaries and Notations 
 

We denoted an empty string as ‘lambda’, strings that contain lowercase letters as terminals 
(except for ‘Smth’), and the all-caps strings as nonterminals. The following UML grammar is 
used in the running example of our implementation: 

1.    CLASS = ( object Class ATTR_ATTRIBUTES ATTR_OPERATIONS Smth) 
2.    Smth = ATTR_NAME ATTR_QUID ATTR_DOCUMENTATION ATTR_ABSTRACT 
3.    ATTR_ATTRIBUTES = attributes ( list Attributes ATTRIBUTES ) 
4.    ATTRIBUTES = ATTRIBUTE ATTRIBUTES  
5.    ATTRIBUTE = ( object ClassAttribute ATTR_NAME ATTR_QUID 

ATTR_DOCUMENTATION ATTR_EXPORT_CONTROL ATTR_TYPE ATTR_INITV ATTR_STATIC 
ATTR_DERIVED ) 

6.    ATTR_TYPE = type stringType  



7.    ATTR_INITV = initv stringInitv  
8.    ATTR_STATIC = static BOOLEAN  
9.   ATTR_DERIVED = derived BOOLEAN   
10. ATTR_OPERATIONS = operations ( list Operations OPERATIONS ) 
11. OPERATIONS = OPERATION OPERATIONS  
12. OPERATION = ( object Operation ATTR_PRECONDITION 

ATTR_POSTCONDITION ATTR_SEMANTICS ATTR_NAME ATTR_QUID 
ATTR_DOCUMENTATION ATTR_RESULT ATTR_EXPORT_CONTROL ATTR_EXCEPTION 
ATTR_CONCURENCY ) 

13. ATTR_PRECONDITION = pre_condition string 
14. ATTR_POSTCONDITION = post_condition string 
15. ATTR_SEMANTICS = semantics string 
16. ATTR_RESULT = result stringResult  
17. ATTR_EXCEPTION = exception stringException  
18. ATTR_CONCURENCY = concurency STRING_CONCURENCY  
19. ATTR_NAME = name string 
20. ATTR_QUID = quid string 
21. ATTR_EXPORT_CONTROL = exportControl STRING_CONTROL  
22. ATTR_ABSTRACT = abstract BOOLEAN  
23. ATTR_DOCUMENTATION = documentation stringDoc  
24. STRING_CONTROL = "Public"  
25. STRING_CONTROL = "Protected"  
26. STRING_CONTROL = "Private" 
27. STRING_CONCURENCY = "Sequential" 
28. BOOLEAN = TRUE  
29. BOOLEAN = FALSE 
30. ATTR_ABSTRACT = lambda 
31. ATTR_TYPE = lambda 
32. ATTR_INITV = lambda 
33. ATTRIBUTES = lambda 
34. ATTR_STATIC = lambda 
35. ATTR_DERIVED = lambda 
36. OPERATIONS = lambda 
37. ATTR_RESULT = lambda 
38. ATTR_EXCEPTION = lambda 
39. ATTR_CONCURENCY = lambda 
40. ATTR_EXPORT_CONTROL = lambda 
41. ATTR_DOCUMENTATION = lambda 

 

3. The implementation of the parallel bidirectional parsing algorithm 
 

This particular implementation of the algorithm uses a shortened version of the UML grammar, 
but other grammars should also work with it, if they are context-free and hold up to the LALR(1) 
properties. To parse the input word in parallel, the grammar is divided into sub-grammars, each 
of which has one of the starting production’s right hand side nonterminals as its own start 
symbol. Separate finite automata is constructed for each sub-grammar to accept the viable 
prefixes for LR(1) and RL(1) items.  

 



 

 

 

 

 

 

Figure 2. Parallel bidirectional parsing 

To read the input word, an ad-hoc lexical analyzer is used. It reads the input file sequentially, 
token by token; if a certain trigger token is read, the analyzer reacts by creating a separate input 
stack, which will contain a chunk of text that acts as an input word for one of the sub-grammars.  

Then, three parsers are created for each of the grammars: an RL, an LR, and a special-case LR 
for post-processing. The latter should be able to not only parse input that contains nonterminals, 
but also construct a valid final derivation of the input word. 

A bidirectional parser framework object contains the three parsers mentioned above, and starts 
them as needed. The parallel bidirectional parser framework creates as many of the mentioned 
bidirectional parser objects as there are chunks of text. As many bidirectional parsers as possible 
are started simultaneously. The number of objects started depends on the number of processors 
available to the Java virtual machine. As the bidirectional parser uses two threads at most, the 
parallel bidirectional framework starts one bidirectional parser for every two processors 
available. As all the bidirectional parsers finish processing their part of the input, the results are 
recombined and processed sequentially, left-to-right. 

Figure 3 demonstrates the most important classes in the implementation. The Main class creates 
instances of both ParallelBidirectional and Sequential classes, and feeds them the 
input words. The ParallelBidirectional class creates an appropriate number of Chomper 
instances, each of which has two instances of the SimpleParse class, and an instance of the 
ActionIII class. The latter is passed its parent Chomper as an argument, to keep track of the 
execution process. The SimpleParse class contains the right number of Grammar and 
Automaton instances. Both ParallelBidirectional and Sequential classes also have an 
instance of the SimpleLex class. The Sequential class contains only one SimpleParse 
instance. The automaton needs to be passed an instance of Grammar as an argument, so it always 
has one. Classes not mentioned in the diagram are PseudoStack, Production, TableRule, 
and dCoordinate. A PseudoStack object inherits all Stack methods and parameters, with 
only one change: a ‘mirrored’ boolean is introduced, and based on that boolean, either 0th 
element or the end of the stack are considered its top. Production class contains all necessary 



variables to describe a grammar production – left hand side, right hand side, lookahead, etc., - so 
as some helper methods irrelevant to parsing. The TableRule class is a representation of one 
entry in an action table. The dCoordinate class represents a state transition in the viable prefix 
automaton. 

Figure 3. The class diagram of our implementation 

As a short, but illustrative, example, let us consider a parallel bidirectional parsing of the 
following word: 

( object Class  

attributes ( list Attributes ) operations ( list Operations ) 

name string quid string documentation stringDoc  abstract TRUE ) 

It is split initially into three chunks: attributes ( list Attributes ), operations ( 
list Operations ), and everything between the tokens name and TRUE. Ideally, all three 



chunks would be parsed simultaneously, using two threads for each. Here is the execution table 
for the LR parser: 

Symbol State Action Input Output States 
attributes 0 shift 2 ) Attributes list (  attributes 0 2 
( 2 shift 3 ) Attributes list  attributes ( 0 2 3 
list 3 shift 4 ) Attributes attributes ( list 0 2 3 4 

 

The RL parser would at the same time parse the word from right to left: 

Symbol State Action Input Output States 

) 0 shift 2 

Attributes 
list ( 
attributes  ) 0 2 

Attributes 2 
reduce 0 ATTRIBUTES, 
go to 3 

Attributes 
list ( 
attributes  ATTRIBUTES )  0 2 3 

Attributes 3 shift 4 
list ( 
attributes  

Attributes 
ATTRIBUTES )  0 2 3 4 

 

Both parsers would stop when all the input have been processed, as described in [1]. The post-
processing phase would use the LR parser’s states, and both parsers’ output stacks, left one’s as 
its own output, and right one as input. The execution trace is as follows: 

Symbol State Action Input Output States 

Attributes 4 shift 5 
ATTRIBUTES 
) 

attributes ( list 
Attributes  0 2 3 4 5 

ATTRIBUTES 5 
shift-nonterminal 
6 ) 

attributes ( list 
Attributes 
ATTRIBUTES 0 2 3 4 5 6 

) 6 shift 9  null 

attributes ( list 
Attributes 
ATTRIBUTES ) 0 2 3 4 5 6 9 

null 9 

reduce 6 
ATTR_ATTRIBUTES, 
go to 1(accept)  null ATTR_ATTRIBUTES 0 1 

 

The Operations chunk would be parsed in the very same way. The LR execution trace is: 

Symbol State Action Input Output States 
operations 0 shift 2 ) Operations list ( operations 0 2 
( 2 shift 3 ) Operations list  operations ( 0 2 3 
list 3 shift 4 ) Operations operations ( list 0 2 3 4 



Operations 4 shift 5 ) operations ( list Operations  0 2 3 4 5 
 

The RL parser would execute in the following way:  

Symbol State Action Input Output States 
) 0 shift 2 Operations list ( operations ) 0 2 

 

This time, the LR thread has done most of the processing. The LR post-processing phase is 
executed as follows: 

Symbol State Action Input Output States 

) 5 

reduce 0 
OPERATIONS, go to 
6 ) 

operations ( list 
Operations 
OPERATIONS  0 2 3 4 5 6 

) 6 shift 9  null 

operations ( list 
Operations 
OPERATIONS )  0 2 3 4 5 6 9 

null 9 

reduce 6 
ATTR_OPERATIONS, 
go to 1(accept)  null ATTR_OPERATIONS 0 1 

 

The last chunk’s execution is no different. Here is its LR thread: 

Symbol State Action Input Output States 

name 0 shift 3 

TRUE abstract 
stringDoc 
documentation 
string quid 
string  name 0 3 

string 3 shift 6 

TRUE abstract 
stringDoc 
documentation 
string quid  name string 0 3 6 

quid 6 
reduce 2 ATTR_NAME, 
go to 2 

TRUE abstract 
stringDoc 
documentation 
string quid  ATTR_NAME 0 2 

quid 2 shift 5 

TRUE abstract 
stringDoc 
documentation 
string ATTR_NAME quid 0 2 5 

string 5 shift 9 

TRUE abstract 
stringDoc 
documentation ATTR_NAME quid string 0 2 5 9 

documentation 9 
reduce 2 ATTR_QUID, go 
to 4 

TRUE abstract 
stringDoc 
documentation ATTR_NAME ATTR_QUID 0 2 4 

documentation 4 shift 8 TRUE abstract ATTR_NAME ATTR_QUID 0 2 4 8 



stringDoc documentation 

stringDoc 8 shift 12 TRUE abstract  
ATTR_NAME ATTR_QUID 
documentation stringDoc 0 2 4 8 12 

abstract 12 

reduce 2 
ATTR_DOCUMENTATION, 
go to 7 TRUE 

ATTR_NAME ATTR_QUID 
ATTR_DOCUMENTATION 0 2 4 7 

abstract 7 shift 11 TRUE 

ATTR_NAME ATTR_QUID 
ATTR_DOCUMENTATION 
abstract 0 2 4 7 11 

 

The RL parser executed much slower, again: 

Symbol State Action Input Output States 

TRUE 0 shift 4 
abstract stringDoc documentation string 
quid string name  TRUE 0 4 

The post-processing is then as follows: 

Symbol State Action Input Output States 

TRUE 11 shift 14  null 

ATTR_NAME ATTR_QUID 
ATTR_DOCUMENTATION 
abstract TRUE  0 2 4 7 11 14 

null 14 

reduce 1 
BOOLEAN, go to 
13  null 

ATTR_NAME ATTR_QUID 
ATTR_DOCUMENTATION 
abstract BOOLEAN 0 2 4 7 11 13 

null 13 

reduce 2 
ATTR_ABSTRACT, 
go to 10  null 

ATTR_NAME ATTR_QUID 
ATTR_DOCUMENTATION 
ATTR_ABSTRACT 0 2 4 7 10 

null 0 
reduce 4 Smth, 
go to 1(accept)   Smth 0 1 

 

The results of all three parsing passes are recombined, the few nonterminals that have not been 
included into the chunks of text are added to it, and the result is parsed one last time. The input 
for the final parse would look exactly like the starting production rule of the grammar, and its 
parsing would be comprised of one reduce operation. As mentioned above, the time complexity 
of the sequential parsing has an order of O(n), where n is the length of the input word. The 
bidirectional parser’s time complexity, as described in [2], is the same in the worst case, and 
O(n/2+x), where x is the length of the post-processed sub-word, which is the remainder of the 
input that needs to be parsed after each of the bidirectional parsers finish processing their pieces 
of input. Using parallelism, we further improve the time complexity to O(n/k+x), where k is the 
number of processors. 

 

 



4. Experimental results 
 

The implementation was tested on several processors with varying number of available threads. 
Each run included the parsing of different-length words. The time measurement results are the 
following: 

For Intel Core 2 Duo E8400, dual-core, with core clock 3.0 GHz, Table 1 and Figure 4 shows the 
execution times expressed in nanoseconds (ns) for various words: 

Word length Parallel Bidirectional Sequential 
506 25252123 ns 2654669 ns 

1014 5110424 ns 4787401 ns 
1958 33894243 ns 8860047 ns 

11518 67451818 ns 88791835 ns 
34870 398498048 ns 549453461 ns 
79558 1350515189 ns 2439088921 ns 

139414 3984107440 ns 6978141087 ns 
218950 9043524881 ns 16930300920 ns 
437878 35076111342 ns 67219607845 ns 
557590 56221657049 ns 108247496322 ns 

Table 1. Comparison between sequential and parallel implementations on a dual-core processor. 

 



 

Figure 4. Execution time comparison #1 

Analyzing Table 1 and Figure 4, we observe that the dual-core architecture does not imply a 
significant improvement in the performance of a parallel implementation versus the sequential 
one, until the length of the input increases dramatically. We believe this is due to the overhead 
needed in the communication between the threads responsible for parsing individual chunks of 
the input word. 

For Intel Core 2 Quad Q9550, core clock 2.83 GHz, the data is as follows: 

Word length Parallel Bidirectional Sequential 
506 5864090 ns 4189464 ns 

1014 24166500 ns 25377723 ns 
1958 10943041 ns 10056091 ns 

11518 79229527 ns 105060509 ns 
34870 390534631 ns 615374024 ns 
79558 1428639078 ns 2721375107 ns 

139414 4021738981 ns 7371264836 ns 
218950 9392302734 ns 17810047685 ns 
437878 36580530061 ns 70750707513 ns 
557590 59502111399 ns 1.15471E+11 ns 

Table 2. Comparison between sequential and parallel implementations on a quad-core processor 



 

Figure 5. Execution time comparison #2 

As we can see in Table 2 and Figure 5, the sequential algorithm has an advantage over the 
parallel bidirectional only for the smaller input words, and the advantage is only slight. Being 
able to run four threads simultaneously reduces the impact of the overhead significantly.  

And, finally, for Intel Core i7 920, quad-core with eight available threads and core clock of 2.67 
GHz, the data is shown in the following figures: 

Word length Parallel Bidirectional Sequential 
506 11703265 ns 13509113 ns 

1014 5005921 ns 4486783 ns 
1958 9158259 ns 9223535 ns 

11518 77737110 ns 111370893 ns 
34870 458384083 ns 776490257 ns 
79558 1987139041 ns 3654058494 ns 

139414 5836634648 ns 10881424143 ns 
218950 13948330771 ns 26525701950 ns 
437878 54400616131 ns 1.04487E+11 ns 
557590 88217821877 ns 1.68993E+11 ns 

Table 3. Comparison between sequential and parallel implementations on a quad-core, eight-
thread processor 



 

Figure 6. Execution time comparison #3 

From Table 3 and Figure 6, we can see that the increase in the amount of parallelism leads to an 
even further improvement in performance. The execution times are comparable for the shorter 
input words, and significantly better for the longer ones. 

5. Conclusions and Future Work 
 

In this paper, we have described an implementation of a parallel parsing algorithm based on the 
bidirectional parsing algorithm [1], which certainly has a lot of potential. Though the described 
implementation was programmed in a more of a proof-of-concept than practical way, the 
experimental data yields reassuring results. As it can be seen from the graphs and tables from 
Section 4, the parallel bidirectional algorithm offers a significant, close to 50% speed 
improvement compared to sequential parsing for the longer words. In the future, the 
implementation can be further refined and brought up to the level of widely used state-of-the-art 
parsers like CUP [8] and ANTLR [7]. Adapting it to other languages should present no 
difficulty. Another direction to investigate is a less-static, size-based input word splitting, that 
would improve the parsing efficiency by distributing the load more evenly between threads. 
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