
An Implementation of a Parallel Bidirectional Parsing Algorithm

Yevhen Chepurnyy,

Blackburn College,

Computer Science Department,

Carlinville, IL, U.S.A.

euyork@gmail.com

Stefan Andrei,

Lamar University,

Computer Science Department,

Beaumont, TX, U.S.A.

Stefan.Andrei@lamar.edu

Abstract. With the growing prevalence of multi-core architectures, parallel parsing has been an important subject of
research. Lam, Ding, and Liu claim in 2008 that among all important phases of XML (e.g. parsing, access,
modification, and serialization), parsing is the most time-consuming one. Many parallel parsing algorithms have
been created to improve the traditional sequential parsing algorithm. In this paper, we present a unique parallel
parsing algorithm based on the bidirectional parsing approach described by Stefan Andrei in 2009 [1]. The algorithm
takes full advantage of the multiprocessor architecture, and, as our experimental data shows, offers a significant
improvement of the parsing speed versus the sequential parsing algorithms.

1. Introduction

Parsing has been a subject of extensive research since the 70s. It is an important part of every
compiler, and as most of the programming languages are subject to the compilation phase, the
importance of parsing cannot be overlooked. Parsing also has applications in other areas of
computer science, such as natural language processing, speech recognition, translations to other
languages, automatic error correction, and so on. Lam, Ding, and Liu claim that among all
important phases of XML (e.g. parsing, access, modification, and serialization), parsing is the
most time-consuming one [9].

There are two types of parsers: top-down and bottom-up. A top-down parser begins to process
the input looking at the starting production, then examines the productions immediately derived
from the starting one, then looks at the productions immediately derived from the ones derived
from the starting production, and so on, recursively. Another way to describe top-down and
bottom-up parsing in comparison to each other is representing a context-free grammar as a tree
structure. The root of the said tree would be the grammar’s starting production, while the leaf
nodes would be terminals. The Left-to-right Leftmost parsing, usually abbreviated as LL, and the
Right-to-left Rightmost parsing, dubbed RR, are examples of top-down parsing methods [4].
Left-to-right, or right-to-left, means the direction of parsing the input word, and leftmost, or
rightmost, means the directions of processing the particular grammar rules. LL and RR parsers
are usually coded by hand, with a few exclusions. ANTLR, short for ANother Tool for Language
Recognition, is an example of an LL parser generator. Bottom-up parsers are an exact opposite
of the top-down. A bottom-up parser identifies the most basic units, and works its way up to the
starting production. The Left-to-right Rightmost parsing, or LR [3], and the Right-to-left

mailto:euyork@gmail.com�
mailto:Stefan.Andrei@lamar.edu�

Leftmost parsing or RL [2], represent two general ways to use this approach. Bottom-up parsing
methods are more complex than top-down parsing, and ought to be described in greater detail.

LR(0) and RL(0) parsers are the most basic type, which can be represented by a simple state-
transition machine with input and output tapes. Each state of this machine is a collection of
grammar productions, with a dot on its right hand side indicating which tokens of that production
have been recognized by the grammar. Each of the machine’s transitions would be one of the
tokens. The process of LR(0) or RL(0) parsing may be described as examining the input
symbols, comparing them to the production rules’ right hand sides, and replacing the matched
sets of symbols with the respective production’s left hand side, until the starting symbol has been
derived in this way. The state transition machine emulates that as taking a state transition which
corresponds to the currently examined input symbol, and performing one of the following
actions: shift, which consists of copying the examined symbol to the output tape; reduce, which
removes x symbols from the output tape (where x = length of a certain production’s right hand
side), and copies the left hand side of that production to the output; accept, which designates a
successful end of the parsing; and reject, which signals that the examined input word contains an
invalid combination of input tokens.

LR(1) and RL(1) are an improved version of LR(0) and RL(0). They offer more flexibility and
are able to parse more languages. This is achieved by introducing a lookahead – a terminal that
could precede, for RL, or follow, in case of LR, the particular rule’s left hand side token in the
input word. The parenthesized one beside the grammar name represents the number of lookahead
terminals. LR(1) and RL(1) contain much more states than the zero-lookahead versions – for
each of the lookaheads, a new production needs to be introduced into the automaton, often
leading to the creation of new states. A typical RL(1) item looks like this (Figure 1):

Figure 1. An RL(1) item.

Figure 1 shows an item for the production B → a X e, where the terminal ‘e’ has already been
processed, and ‘a’ is a lookahead terminal that might precede X.

LALR(1) and LARL(1), usually abbreviated as LALR or LARL, where LA stands for
“lookahead”, were designed to retain the RL(1) and LR(1) grammars’ flexibility, but without
having to create bulky automata with an unnecessarily large number of states. In LALR and
LARL grammars, the states that contain identical productions that differ only in lookaheads are
merged. All the transitions of the merged states are retained – if a grammar holds to the LALR

properties, those transitions would lead to the states that would also be merged. An LARL parser
can be represented by a deterministic pushdown automaton. This imposes some limits on which
languages can be parsed in a LALR or LARL way – meaning, only the languages with a context-
free property. For example, natural languages cannot be parsed that way, but many of their
unambiguous parts can be [12].

A context-free grammar consists of a set of terminals, a set of nonterminals (including a start
symbol), and a set of productions. Terminals are the literal characters that can appear in the
inputs to or outputs from the production rules of a formal grammar and that cannot be broken
down into "smaller" units. In the practical applications, terminals are the tokens of which the
input word, that is to be parsed by the grammar. Nonterminals are the symbols used to represent
terminals and other nonterminals in the grammar productions. The latter are the body of the
grammar, consisting of the left hand side, which is always a single nonterminal, and the right
hand side, which can consist of one to any finite number of terminals, nonterminals, or both, or a
symbol that represents null word. A word is null (also known as empty) if its length is zero.
Productions link terminals to nonterminals, and nonterminals to each other and the start symbol
[11].

The context-free language this research refers to is the Unified Modeling Language (UML). It is
a general-purpose modeling language in the field of object-oriented software engineering. The
standard was managed and created by the employees of the Rational Software Corporation: Ivar
Jacobson, Grady Booch, and James Rumbaugh. UML combines techniques from data modeling,
business modeling, object modeling, and component modeling. It can be used with all processes,
throughout the software development life cycle, and across different implementation
technologies [10]. UML parsing has possible uses in reverse software engineering.

Sequential parsing, no matter the type or method, has always left room for improving its
efficiency. Its time complexity was O(n+|G|) in the very best case, with n being a number of
tokens in the word, and |G| being the number of symbols in the grammar, or its size. With the
introduction of multi-core processors, there have been many attempts to introduce parallelism to
the process of parsing. The problem here is in the splitting of an input word into chunks to parse
them in parallel. If done arbitrarily, the finite state machine would fail to parse most of those
chunks - it always starts the parsing process in state 0, while the appropriate state for properly
parsing most of the chunks would be different.

One recent static parallel parser for XML was described by Wei Lu et al. in their work “A
Parallel Approach to XML Parsing”. Their parser solves the splitting problem by pre-parsing the
document to create its “skeleton” structure, which divides it into sets of tags corresponding to the
certain subsets of the grammar. When starting the parallel parsing process, the finite state
machine starts with the state corresponding to a particular grammar subset. Compared to the
sequential parsing, this approach involves a considerable amount of overhead because of the
preprocessing, but still offers a significant increase in parsing speed [5].

Another related approach to the parallel parsing of XML documents was described by Yu Wu, Qi
Zhang, Zhiqiang Yu, and Jianhui Li in their work “A Hybrid Parallel Processing for XML
Parsing and Schema Validation”. Their approach avoids any pre-processing overhead by
introducing a notion of speculative parsing. A speculative parser treats each chunk as a separate
document, and processes it starting with the first opening tag. All the segments of the chunks that
fall out of the XML document structure, like an unresolved opening tag, are grouped by type and
put onto respective queues, and resolved after the parallel phase of processing is complete. This
approach lessens the amount of overhead by limiting it to the less resource-consuming post-
processing [6].

Another type of a parallel parser was described in “Parallel Parsing-based Reverse Engineering”
[1]. The author presented a bidirectional parallel parser, which, using an RL and an LR parsers
equivalent to each other, parsed the input word in parallel starting simultaneously in the
beginning of the input, and at the end. The workability of creating both an LR and an RL parser
from one grammar that holds to the LR or RL property, and the complete equivalence of them to
each other was proved in [2]. The two parsers stop processing the word nondeterministically, by
halting when all of the input words have been consumed. This is also described in detail in [1].
This approach avoids the word-splitting problem entirely, but does not make use of more than
two processors.

Motivation. This paper explores the effectiveness of combining bidirectional parallel parsing
with splitting a document into statically defined sets of tokens and processing them in parallel.
The potential increase in efficiency of parsing after using multiple bidirectional parsers in
parallel is investigated. A Java implementation of different parsing algorithms is created to
evaluate the performance of parallel bidirectional parsing.

Structure of the paper. Section 2 explains the notations and grammar used. Section 3 provides
the description of the implementation and the way it operates, and gives the examples of
execution. Section 4 gives the experimental results. Conclusion and Future Work end this paper.

2. Preliminaries and Notations

We denoted an empty string as ‘lambda’, strings that contain lowercase letters as terminals
(except for ‘Smth’), and the all-caps strings as nonterminals. The following UML grammar is
used in the running example of our implementation:

1. CLASS = (object Class ATTR_ATTRIBUTES ATTR_OPERATIONS Smth)
2. Smth = ATTR_NAME ATTR_QUID ATTR_DOCUMENTATION ATTR_ABSTRACT
3. ATTR_ATTRIBUTES = attributes (list Attributes ATTRIBUTES)
4. ATTRIBUTES = ATTRIBUTE ATTRIBUTES
5. ATTRIBUTE = (object ClassAttribute ATTR_NAME ATTR_QUID

ATTR_DOCUMENTATION ATTR_EXPORT_CONTROL ATTR_TYPE ATTR_INITV ATTR_STATIC
ATTR_DERIVED)

6. ATTR_TYPE = type stringType

7. ATTR_INITV = initv stringInitv
8. ATTR_STATIC = static BOOLEAN
9. ATTR_DERIVED = derived BOOLEAN
10. ATTR_OPERATIONS = operations (list Operations OPERATIONS)
11. OPERATIONS = OPERATION OPERATIONS
12. OPERATION = (object Operation ATTR_PRECONDITION

ATTR_POSTCONDITION ATTR_SEMANTICS ATTR_NAME ATTR_QUID
ATTR_DOCUMENTATION ATTR_RESULT ATTR_EXPORT_CONTROL ATTR_EXCEPTION
ATTR_CONCURENCY)

13. ATTR_PRECONDITION = pre_condition string
14. ATTR_POSTCONDITION = post_condition string
15. ATTR_SEMANTICS = semantics string
16. ATTR_RESULT = result stringResult
17. ATTR_EXCEPTION = exception stringException
18. ATTR_CONCURENCY = concurency STRING_CONCURENCY
19. ATTR_NAME = name string
20. ATTR_QUID = quid string
21. ATTR_EXPORT_CONTROL = exportControl STRING_CONTROL
22. ATTR_ABSTRACT = abstract BOOLEAN
23. ATTR_DOCUMENTATION = documentation stringDoc
24. STRING_CONTROL = "Public"
25. STRING_CONTROL = "Protected"
26. STRING_CONTROL = "Private"
27. STRING_CONCURENCY = "Sequential"
28. BOOLEAN = TRUE
29. BOOLEAN = FALSE
30. ATTR_ABSTRACT = lambda
31. ATTR_TYPE = lambda
32. ATTR_INITV = lambda
33. ATTRIBUTES = lambda
34. ATTR_STATIC = lambda
35. ATTR_DERIVED = lambda
36. OPERATIONS = lambda
37. ATTR_RESULT = lambda
38. ATTR_EXCEPTION = lambda
39. ATTR_CONCURENCY = lambda
40. ATTR_EXPORT_CONTROL = lambda
41. ATTR_DOCUMENTATION = lambda

3. The implementation of the parallel bidirectional parsing algorithm

This particular implementation of the algorithm uses a shortened version of the UML grammar,
but other grammars should also work with it, if they are context-free and hold up to the LALR(1)
properties. To parse the input word in parallel, the grammar is divided into sub-grammars, each
of which has one of the starting production’s right hand side nonterminals as its own start
symbol. Separate finite automata is constructed for each sub-grammar to accept the viable
prefixes for LR(1) and RL(1) items.

Figure 2. Parallel bidirectional parsing

To read the input word, an ad-hoc lexical analyzer is used. It reads the input file sequentially,
token by token; if a certain trigger token is read, the analyzer reacts by creating a separate input
stack, which will contain a chunk of text that acts as an input word for one of the sub-grammars.

Then, three parsers are created for each of the grammars: an RL, an LR, and a special-case LR
for post-processing. The latter should be able to not only parse input that contains nonterminals,
but also construct a valid final derivation of the input word.

A bidirectional parser framework object contains the three parsers mentioned above, and starts
them as needed. The parallel bidirectional parser framework creates as many of the mentioned
bidirectional parser objects as there are chunks of text. As many bidirectional parsers as possible
are started simultaneously. The number of objects started depends on the number of processors
available to the Java virtual machine. As the bidirectional parser uses two threads at most, the
parallel bidirectional framework starts one bidirectional parser for every two processors
available. As all the bidirectional parsers finish processing their part of the input, the results are
recombined and processed sequentially, left-to-right.

Figure 3 demonstrates the most important classes in the implementation. The Main class creates
instances of both ParallelBidirectional and Sequential classes, and feeds them the
input words. The ParallelBidirectional class creates an appropriate number of Chomper
instances, each of which has two instances of the SimpleParse class, and an instance of the
ActionIII class. The latter is passed its parent Chomper as an argument, to keep track of the
execution process. The SimpleParse class contains the right number of Grammar and
Automaton instances. Both ParallelBidirectional and Sequential classes also have an
instance of the SimpleLex class. The Sequential class contains only one SimpleParse
instance. The automaton needs to be passed an instance of Grammar as an argument, so it always
has one. Classes not mentioned in the diagram are PseudoStack, Production, TableRule,
and dCoordinate. A PseudoStack object inherits all Stack methods and parameters, with
only one change: a ‘mirrored’ boolean is introduced, and based on that boolean, either 0th
element or the end of the stack are considered its top. Production class contains all necessary

variables to describe a grammar production – left hand side, right hand side, lookahead, etc., - so
as some helper methods irrelevant to parsing. The TableRule class is a representation of one
entry in an action table. The dCoordinate class represents a state transition in the viable prefix
automaton.

Figure 3. The class diagram of our implementation

As a short, but illustrative, example, let us consider a parallel bidirectional parsing of the
following word:

(object Class

attributes (list Attributes) operations (list Operations)

name string quid string documentation stringDoc abstract TRUE)

It is split initially into three chunks: attributes (list Attributes), operations (
list Operations), and everything between the tokens name and TRUE. Ideally, all three

chunks would be parsed simultaneously, using two threads for each. Here is the execution table
for the LR parser:

Symbol State Action Input Output States
attributes 0 shift 2) Attributes list (attributes 0 2
(2 shift 3) Attributes list attributes (0 2 3
list 3 shift 4) Attributes attributes (list 0 2 3 4

The RL parser would at the same time parse the word from right to left:

Symbol State Action Input Output States

) 0 shift 2

Attributes
list (
attributes) 0 2

Attributes 2
reduce 0 ATTRIBUTES,
go to 3

Attributes
list (
attributes ATTRIBUTES) 0 2 3

Attributes 3 shift 4
list (
attributes

Attributes
ATTRIBUTES) 0 2 3 4

Both parsers would stop when all the input have been processed, as described in [1]. The post-
processing phase would use the LR parser’s states, and both parsers’ output stacks, left one’s as
its own output, and right one as input. The execution trace is as follows:

Symbol State Action Input Output States

Attributes 4 shift 5
ATTRIBUTES
)

attributes (list
Attributes 0 2 3 4 5

ATTRIBUTES 5
shift-nonterminal
6)

attributes (list
Attributes
ATTRIBUTES 0 2 3 4 5 6

) 6 shift 9 null

attributes (list
Attributes
ATTRIBUTES) 0 2 3 4 5 6 9

null 9

reduce 6
ATTR_ATTRIBUTES,
go to 1(accept) null ATTR_ATTRIBUTES 0 1

The Operations chunk would be parsed in the very same way. The LR execution trace is:

Symbol State Action Input Output States
operations 0 shift 2) Operations list (operations 0 2
(2 shift 3) Operations list operations (0 2 3
list 3 shift 4) Operations operations (list 0 2 3 4

Operations 4 shift 5) operations (list Operations 0 2 3 4 5

The RL parser would execute in the following way:

Symbol State Action Input Output States
) 0 shift 2 Operations list (operations) 0 2

This time, the LR thread has done most of the processing. The LR post-processing phase is
executed as follows:

Symbol State Action Input Output States

) 5

reduce 0
OPERATIONS, go to
6)

operations (list
Operations
OPERATIONS 0 2 3 4 5 6

) 6 shift 9 null

operations (list
Operations
OPERATIONS) 0 2 3 4 5 6 9

null 9

reduce 6
ATTR_OPERATIONS,
go to 1(accept) null ATTR_OPERATIONS 0 1

The last chunk’s execution is no different. Here is its LR thread:

Symbol State Action Input Output States

name 0 shift 3

TRUE abstract
stringDoc
documentation
string quid
string name 0 3

string 3 shift 6

TRUE abstract
stringDoc
documentation
string quid name string 0 3 6

quid 6
reduce 2 ATTR_NAME,
go to 2

TRUE abstract
stringDoc
documentation
string quid ATTR_NAME 0 2

quid 2 shift 5

TRUE abstract
stringDoc
documentation
string ATTR_NAME quid 0 2 5

string 5 shift 9

TRUE abstract
stringDoc
documentation ATTR_NAME quid string 0 2 5 9

documentation 9
reduce 2 ATTR_QUID, go
to 4

TRUE abstract
stringDoc
documentation ATTR_NAME ATTR_QUID 0 2 4

documentation 4 shift 8 TRUE abstract ATTR_NAME ATTR_QUID 0 2 4 8

stringDoc documentation

stringDoc 8 shift 12 TRUE abstract
ATTR_NAME ATTR_QUID
documentation stringDoc 0 2 4 8 12

abstract 12

reduce 2
ATTR_DOCUMENTATION,
go to 7 TRUE

ATTR_NAME ATTR_QUID
ATTR_DOCUMENTATION 0 2 4 7

abstract 7 shift 11 TRUE

ATTR_NAME ATTR_QUID
ATTR_DOCUMENTATION
abstract 0 2 4 7 11

The RL parser executed much slower, again:

Symbol State Action Input Output States

TRUE 0 shift 4
abstract stringDoc documentation string
quid string name TRUE 0 4

The post-processing is then as follows:

Symbol State Action Input Output States

TRUE 11 shift 14 null

ATTR_NAME ATTR_QUID
ATTR_DOCUMENTATION
abstract TRUE 0 2 4 7 11 14

null 14

reduce 1
BOOLEAN, go to
13 null

ATTR_NAME ATTR_QUID
ATTR_DOCUMENTATION
abstract BOOLEAN 0 2 4 7 11 13

null 13

reduce 2
ATTR_ABSTRACT,
go to 10 null

ATTR_NAME ATTR_QUID
ATTR_DOCUMENTATION
ATTR_ABSTRACT 0 2 4 7 10

null 0
reduce 4 Smth,
go to 1(accept) Smth 0 1

The results of all three parsing passes are recombined, the few nonterminals that have not been
included into the chunks of text are added to it, and the result is parsed one last time. The input
for the final parse would look exactly like the starting production rule of the grammar, and its
parsing would be comprised of one reduce operation. As mentioned above, the time complexity
of the sequential parsing has an order of O(n), where n is the length of the input word. The
bidirectional parser’s time complexity, as described in [2], is the same in the worst case, and
O(n/2+x), where x is the length of the post-processed sub-word, which is the remainder of the
input that needs to be parsed after each of the bidirectional parsers finish processing their pieces
of input. Using parallelism, we further improve the time complexity to O(n/k+x), where k is the
number of processors.

4. Experimental results

The implementation was tested on several processors with varying number of available threads.
Each run included the parsing of different-length words. The time measurement results are the
following:

For Intel Core 2 Duo E8400, dual-core, with core clock 3.0 GHz, Table 1 and Figure 4 shows the
execution times expressed in nanoseconds (ns) for various words:

Word length Parallel Bidirectional Sequential
506 25252123 ns 2654669 ns

1014 5110424 ns 4787401 ns
1958 33894243 ns 8860047 ns

11518 67451818 ns 88791835 ns
34870 398498048 ns 549453461 ns
79558 1350515189 ns 2439088921 ns

139414 3984107440 ns 6978141087 ns
218950 9043524881 ns 16930300920 ns
437878 35076111342 ns 67219607845 ns
557590 56221657049 ns 108247496322 ns

Table 1. Comparison between sequential and parallel implementations on a dual-core processor.

Figure 4. Execution time comparison #1

Analyzing Table 1 and Figure 4, we observe that the dual-core architecture does not imply a
significant improvement in the performance of a parallel implementation versus the sequential
one, until the length of the input increases dramatically. We believe this is due to the overhead
needed in the communication between the threads responsible for parsing individual chunks of
the input word.

For Intel Core 2 Quad Q9550, core clock 2.83 GHz, the data is as follows:

Word length Parallel Bidirectional Sequential
506 5864090 ns 4189464 ns

1014 24166500 ns 25377723 ns
1958 10943041 ns 10056091 ns

11518 79229527 ns 105060509 ns
34870 390534631 ns 615374024 ns
79558 1428639078 ns 2721375107 ns

139414 4021738981 ns 7371264836 ns
218950 9392302734 ns 17810047685 ns
437878 36580530061 ns 70750707513 ns
557590 59502111399 ns 1.15471E+11 ns

Table 2. Comparison between sequential and parallel implementations on a quad-core processor

Figure 5. Execution time comparison #2

As we can see in Table 2 and Figure 5, the sequential algorithm has an advantage over the
parallel bidirectional only for the smaller input words, and the advantage is only slight. Being
able to run four threads simultaneously reduces the impact of the overhead significantly.

And, finally, for Intel Core i7 920, quad-core with eight available threads and core clock of 2.67
GHz, the data is shown in the following figures:

Word length Parallel Bidirectional Sequential
506 11703265 ns 13509113 ns

1014 5005921 ns 4486783 ns
1958 9158259 ns 9223535 ns

11518 77737110 ns 111370893 ns
34870 458384083 ns 776490257 ns
79558 1987139041 ns 3654058494 ns

139414 5836634648 ns 10881424143 ns
218950 13948330771 ns 26525701950 ns
437878 54400616131 ns 1.04487E+11 ns
557590 88217821877 ns 1.68993E+11 ns

Table 3. Comparison between sequential and parallel implementations on a quad-core, eight-
thread processor

Figure 6. Execution time comparison #3

From Table 3 and Figure 6, we can see that the increase in the amount of parallelism leads to an
even further improvement in performance. The execution times are comparable for the shorter
input words, and significantly better for the longer ones.

5. Conclusions and Future Work

In this paper, we have described an implementation of a parallel parsing algorithm based on the
bidirectional parsing algorithm [1], which certainly has a lot of potential. Though the described
implementation was programmed in a more of a proof-of-concept than practical way, the
experimental data yields reassuring results. As it can be seen from the graphs and tables from
Section 4, the parallel bidirectional algorithm offers a significant, close to 50% speed
improvement compared to sequential parsing for the longer words. In the future, the
implementation can be further refined and brought up to the level of widely used state-of-the-art
parsers like CUP [8] and ANTLR [7]. Adapting it to other languages should present no
difficulty. Another direction to investigate is a less-static, size-based input word splitting, that
would improve the parsing efficiency by distributing the load more evenly between threads.

6. Acknowledgements

This project was funded by National Science Foundation, grant no. 0851912, “REU SITE:
Engagement of Undergraduates in Theory, Algorithm & Applications of Science and
Engineering in Information Technology”. We would like to thank Dr. S. Kami Makki for all of
his help on our way. We also thank Quentin Mayo and Angel Vazquez for their ongoing support.

7. Bibliography

[1] Stefan Andrei: “Parallel Parsing-based Reverse Engineering”. Proceedings of the First 2009
World Congress on Computer Science and Information Engineering (CSIE 2009), IEEE
Computer Society, pp. 503-507, Los Angeles, USA, March 31-April 2, 2009.

[2] Stefan Andrei: “Bidirectional Parsing” (PhD Dissertation), Hamburg, February 2000,
[available online at http://www.sub.uni-hamburg.de/disse/134/inhalt.html], 150 pages.

[3] Donald E. Knuth: “On the Translation of Languages from Left to Right”, Information and
Control, Vol. 8, pg. 607-639, 1965.

[4] D. J. Rosenkrantz, R.E. Stearns: “Properties of deterministic top down grammars”,
Proceedings of the first annual ACM symposium on Theory of Computing, ACM New York, NY,
USA, 1969

[5] Wei Lu, Kenneth Chiu, and Yinfei Pan: “A Parallel Approach to XML Parsing”. Proceedings
of the 7th IEEE/ACM International Conference on Grid Computing, IEEE Computer Society
Washington, DC, USA, 2006

[6] Yu Wu, Qi Zhang, Zhiqiang Yu, and Jianhui Li: “A Hybrid Parallel Processing for XML
Parsing and Schema Validation”. Balisage: The Markup Conference, August 12 - 15, 2008.

[7] T. J. Parr, R.W. Quong: “ANTLR: A Predicated LL(k) Parser Generator”, Software—
Practice and Experience, Vol. 25(7), 789–810 (July 1995).

[8] S. Hudson, F. Flannery, and S. Ananian: “CUP – a LALR Parser for Java”. Technical Report,
Technical University of Munich, [available online at http://www2.cs.tum.edu/projects/cup],
2006.

[9] Tak Cheung Lam, Jianxun Jason Ding, Jyh-Charn Liu. XML Document Parsing: Operational
and Performance Characteristics. IEEE Computer, pp. 30-37, 2008.

[10] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User
Guide, The (2nd Edition) (Addison-Wesley Technology Series). Addison-Wesley Professional,
2005.

[11] Chomsky, Noam. "Three models for the description of language". IEEE Transactions on
Information Theory, Vol. 2 (3), September 1956.

[12] Shieber, Stuart (1985). "Evidence against the context-freeness of natural language".
Linguistics and Philosophy 8 (3): 333–343.

http://www2.cs.tum.edu/projects/cup�

	[4] D. J. Rosenkrantz, R.E. Stearns: “Properties of deterministic top down grammars”, Proceedings of the first annual ACM symposium on Theory of Computing, ACM New York, NY, USA, 1969

