
1

PEARLS: An Integrated Environment for Task
Scheduling

Nilam Chand, Bindiya Mansharamani, Rafael Romero , Will Beazley, and Ştefan
Andrei

Department of Computer Science,
Lamar Unviersity, Beaumont TX, 77710, USA

{nilamc, bindiyam, rafaelr, williamb, sandrei}@cs.lamar.edu

Abstract —The scheduling problem answers the question whether a given set of input tasks is schedulable (or feasible).
It has been studied since ’70s and impressive results have been revealed to the scientific community. This paper presents
an implementation tool, PEARLS i.e, Pliable Earliest Deadline First, Rate Monotonic, Least Laxity Schedulers, based
on some of the most significant existing schedulability analytical feasibility conditions and schedulability algorithms.If
the input tasks set is feasible, our tool can simulate all the traditional scheduling methods:rate monotonic (RM), earliest
deadline first (EDF) and least laxity(LL). Moreover, the tool is designed to handle both preemptive as well as non
preemptive tasks. Both periodic and sporadic tasks and precedence contraints may also be considered in the input.
Experimental results have been conducted for our tool implemented in the recent Java Development Kit (JDK) version
1.6 on a Pentium GHz system having 1MB memory. We tested our tool on several real-time systems specifications, and
the obtained experimental results have confirmed that our tool is efficient and useful.

Index Terms —Real-Time Systems, Real-Time Scheduling, Schedulability Testing, Uniprocessor Schedulability, Multi-
Processor Schedulability

✦

1 INTRODUCTION

D ECISION versions of scheduling problems be-
long to NP and most of them are NP-hard [9],

[8]. Researchers have concentrated their efforts to
find efficient heuristics that can solve the schedul-
ing problem in all circumstances: preemptable or
non-preemptable, with or without precedence con-
straints, uniprocessor or multiprocessor, and so on.
Some of the traditional methods are Rate-Monotonic
(RM), Earliest-Deadline-First (EDF), and Least-
Laxity (LL).

Our tool has a two-fold contribution. Firstly, it
performs certain preliminary tests and, secondly, it
gives the simulation of scheduling the set of input
tasks.

Our paper integrates all these heuristics in only
one single tool able to do analysis and simulation
of an arbitrary set of tasks.

Given a set of (computer) tasks (also called pro-
cesses), scheduling is to determine when to execute

which task, thus determining the execution order of
these tasks. For example, a set of tasks canT1=“do
an expression evaluation”,T2=“do a mouse move”,
T3=“do a document printing”excuted by the same
processor”. For the multiprocessors and distributed
systems, scheduling means also to determine an
assignment of these tasks to a specific processor,
e.g., T1 and T3 above are done by processorP1,
andT2 is done by processorP2.

Scheduling is a central activity of a computer
system, usually performed by the operating system.
It is also necessary in many non-computer systems
(e.g., assembly lines). In the case of real-time
scheduling, the goal is to meet the deadline of every
task by ensuring each task can complete execution
by its specified deadline. The deadline is obtained
from the environmental constraints imposed by the
application.

Scheduling analysis is to determine whether a
specific task of a set of tasks satisfying certain con-
straints can be successfully scheduled (completing



2

execution of every task by its specified deadline)
using a specific scheduler. These conditions are
formulated as aschedulability test, that is to validate
whether a given application can satisfy its specified
deadlines when scheduled according to a specific
scheduling algorithm. A schedulability test is often
done at compile time, before the computer system
and its tasks start their execution. If the test can be
performed efficiently, then it can be done at run-time
as an on-line test also calledsimulation. PEARLS is
able to do both scheduling analysis and simulation.

1.1 Definitions
This next section defines the key terms used.
A Real Time System (RTS) is a system that

can produce results in a certain time. Time is an
important factor that determines that efficiency of
an RTS. Simulation is often used to analyze the
RTS. It is building a model (computer or physical
model) of a system under study and implementing
actions allowed in the system on the model. A
simulator can carry out simulated executions of the
simulated system and can display the outcomes of
these executions[1]. A schedulability test validates
whether the application under study meets a given
set of constraints. TheSchedulablity utilization is
the maximum utilization allowed for a set of tasks
that will guarantee a feasible scheduling of this task
set.

A taskT is a computer process, typically denoted
thus: T = (s, c, p, d, D), for simplicity, we some-
times avoid to mention all 5 of these elements, e.g.,
T = (0, 1, 4, 4, ) advoids mentioning theabsolute
deadline D. TaskT has following members:Start
Time, which defines when the task is ready for
execution and denoted bys; Computation Time, that
is the worst case execution time for a particular task
and denoted byc; Period, which is the least required
interval in the execution of a task and is denoted by
p; Relative Deadline, which is a deadline relative
to the start time and denoted byd; and Absolute
Deadline, which is the absolute or the wall clock
time and usually denoted byD (= s+d) [1].

2 SCHEDULING

Scheduling is the main activity in the implemen-
tation of a real time system. The synchronization
between the processors and the task set is handled
by the scheduler. It is the job of the scheduler

to determine the performance of the tasks in the
processor. For scheduling, we need ascheduling
algorithm and a way to determine thepriority of the
tasks. There are two types of scheduling schemes,
static/compile time scheduling and dynamic/runtime
scheduling [5].

Scheduling can be done by using different tech-
niques that focus upon critera such asthe number
of processors, types of tasks or preemption schemes.
In a processor based scheduling where the focus
is upon the number of processors one can use
uniprocessor scheduling where the scheduling is
done only once before execution at compile time.
This method is inheriently static since the prior-
ities are not reevulated overtime and thus do not
change. Tasks may be preemptable with or without
precedence constraints. Otherwise amultiprocessor
scheduling scheme may or must be used, this,
however, increases the complexity of the system and
the scheduling. For these other types of scheduling
schemes a priori knowledge of: Deadlines, Com-
putation times, and the Start times of the tasks is
necessary.

There are three main types of tasks in a RTS.
A single-instance task is a task that executes only
once. A periodic task, is a task that has many
instances or iterations, and there is a fixed time (pe-
riod) between two consecutive releases of the same
task. A sporadic task has zero or more instances,
and there exists a minimum interval between two
consecutive releases of the same task.

When the scheduling allows preemption, there
can be two variations, either there ispremptability
or priority based scheduling which relies on whether
a process can be interrupted, prempted or otherwise
is (or must be) non-preemptable, having critcal
sections which are atomic. In preemptive scheduling
the control is transferred to the higher priority job
whenever it becomes ready, or we can have anon-
preemptive based scheduling which is similar to the
first-in, first-out (FIFO) scheme. The lower priority
tasks are allowed to execute, even if the higher
priority task is there in the ready queue.

2.1 Scheduling Techniques

Schedulers can be categorized into fixed-priority
schedulers and dynamic-priority schedulers. In a
fixed-priority scheduler, the priority of all instances
of a task is the same whereas in a dynamic-priority



3

scheduler, the priority of the instances of a task may
vary. A popular example of fixed-priority scheduler
is Rate Monotonic (RM). The tasks in this scheme
are prioritized in accordance with their period. The
RMS executes a task the moment an instance is
ready with shortest period. A taskJi has a higher
priority than taskJk if and only if the periodpi

< pk. Earliest Deadline First (EDF) and Least
Laxity (LL) are the examples of dynamic-priority
scheduler. EDF is designed to execute the task at the
every instant it is ready and has the earliest absolute
deadline (i.e. ,D = S + d). If two or more tasks
have the same deadline, EDF randomly selects any
one for the next execution. It is a dynamic-priority
scheduler since task priorities may change at run-
time depending on the nearness of their absolute
deadline. This scheduling can, for large task sets,
achieve up to 69% of processor utilization. LL is
often called Minimum-Laxity-First (MLF) or Least-
Slack-Time-First (LST) algorithm. Ifc(i) denotes
the remaining computation time of a task at timei
and d(i) denotes the deadline of a task relative to
the current timei, then the /emphlaxity (or slack) of
a task at timei is d(i)− c(i). In other words laxity
is the maximum time a task can delay execution
without missing its deadline anytime in the future.
The scheduler executes at every instant the ready
task with the smallest laxity. It has been proved that
both LL and EDF are optimal for preemptable tasks
[5], [1].

2.2 Schedulability Tests
Schedulability tests are performed to check if a

given set of tasks satisfy specified constraints. There
exist many sufficient and/or necessary conditions
that can be used as good schedulability tests. this
subsections contains a selection of ten such tests:

2.2.1 Schedulability Test 1
For an independent task set that is preemptable

and periodic on a uniprocessor with
• di ≥ pi

• pi are multiples of each other
• U = c1/p1 + ... + cn/pn,

The tasks are RM schedulable if and only ifU ≤ 1.
For example, the task set in Table 2.2.1 is RM-

schedulable becausep2 < p1 < p3, p1 = 2p2, p3 =
4p2 andU = c1/p1 + c2/p2 + c3/p3 = 1/4 + 1/2 +
2/8 = 1.

JobId si ci pi di

1 0 1 4 4
2 0 1 2 2
3 0 2 8 8

TABLE 1
An Example of Task Set For Uniprocessor

2.2.2 Schedulability Test 2
For an independent task set that is preemptable

and periodic on a uniprocessor, if U be the uti-
lization then, The task set is schedulable ifU ≤
limn→∞ n(21/n − 1) = ln 2 ≈ 0.6931. [2]

For example, the task set in Table 2.2.1 does not
satisfy Schedulability Test 2 because U> 0.771

2.2.3 Schedulability Test 3
For a task set sorted in the increasing order of

their period then ifwi(t) =
∑i

limk=1
ck ∗ pt/pk, 0 <

t ≤ pi, Task Ji is schedulable if and only if
there exists awi(t) ≤ t, for any time instant
t, t = kpj , j = 1, ..., i, k = 1, ..., ⌊pi/pj⌋ .

If the relative deadlinedi 6= the periodpi, then
pi is replaced bymin(di, pi) in the above formula.

For example, the task set in Table 2.2.1 is not
schedulable, since at time =2 it cannot find a value
of w < t.

2.2.4 Schedulability Test 4
Given the value ofci the computation time of task

Ji, a set of n periodic tasks,(di >= pi), a necessary
and sufficient condition for feasible scheduling of
this task set on a uniprocessor is:

• U = c1/p1 + ... + cnn/pp ≤ 1.
For example, the task set in table 2.2.1 is schedu-

lable, since the deadlines are equal to the periods,
and Utilization is<= 1.

Remark: for a task set containing some tasks
whose relative deadlinesdi are less than their
periods, no easy schedulability test exists with a
necessary and sufficient condition.

2.2.5 Schedulability Test 5
Given a set of independent, preemptable, and

periodic tasks on a uniprocessor, a feasible condition
is U = c1/min(d1, p1) + ... + cn/min(dn, pn) ≤ 1

For example, the task set in table 2.2.1 is schedu-
lable, since the deadlines are equal to the periods,
and Utilization is< 1.



4

2.2.6 Schedulability Test 6
States that if U be the total utilization of this

tasks and the maximum relative deadline among the
task deadlines be dmax and P is the least common
multiple (LCM) of these tasks’ periods, with the
sum of computation times with absolute deadline
less that t, s(t). Then this set of tasks is not EDF-
schedulable if either of the following conditions
holds:

• U > 1
• t < min(P+dmax(U/(1−U))max1≤i≤n(pi−di))

such thats(t) > t.
For example, the task set in table 2.2.1 is not

schedulable, since the second criteria fails.

JobId ci pi

1 10 50
2 15 70
3 10 40

TABLE 2
An Example Task Set with Sporadic Task

2.2.7 Schedulability Test 7
This test is for a task set with sporadic tasks. If

pS and cS be the period and allocated time for the
Differed Server. If U is the utilizationof the DS then

• pS < p1 < ... < pn < 2pS

• pn > pS + cS

• This is RM-schedulable if the total utilization
of this task set is at mostU(n) = (n −

1)[(US+2

US+1
)

1

n−1 − 1] .
For example, the task set in table 2.2.6 is schedu-

lable, since it satisfies all the criteria.

2.2.8 Schedulability Test 8
If the non preempt able task set M = the set of

periodic tasks + set of sporadic tasks and the initial
laxity li of task Ti = di − ci, then each sporadic
taskTi be (ci, di, pi) is replaced by an equivalent
periodic taskT ′i = (c′i, d′i, p′i) as follows:

• c′i = ci, d
′

i = ci, p
′

i = min(pi, li + 1).

2.2.9 Schedulability Test 9
For a multiprocessor, a schedule exists if the

deadlines for a single instance tasks whose start
times are equal, then the same set of tasks can be

scheduled at runtime even if their start times were
unknown or different. A priori knowledge of the
deadlines and computation times in enough for LL
algorithm.

For example, task set in Table 2.2.9, all the jobs
have the same start time 0 and their deadlines
and computation times are known in advance. Here
when the number of processors is 2, EDF does not
hold but LL does. Now even if we change the start
time of job 3 to 2, LL does hold true.

JobId si ci di pi

1 0 1 2 4
2 0 2 3 4
3 0 4 4 4

TABLE 3
An Example Task Set For Multiprocessor

2.2.10 Schedulability Test 10
Given a set of k independent, preemptable (at

discrete time instants), and periodic tasks on a
multiprocessor system withn processors andU =
c1/p1 + ...+ck/pk ≤ n , T = GCD(p1, ..., pk) , and
t = GCD(T, T (c1/p1), ..., T (ck/pk) .

If t is integral then, the given task set is schedu-
lable.

For example, task set in Table 2.2.9, when the
jobs can be preempted only at the integral time
interval, the tasks can be scheduled becauseT =
GCD(4, 4, 4) = 4 and t = GCD(4, 1, 2, 4) = 1
which is an integral value.

2.3 Precedence Constraints
Order of execution of tasks can be specified

by adding precedence constraints to the scheduling
problem for a single instance tasks on a unipro-
cessor. A task precedence graph can be used that
depicts tasks as nodes and a directed edge to in-
dicate the precedence relationships between tasks.
For example,Ti to Tj means that the jobTi must
complete before jobTj can start.

3 DESIGN

The tool was developed as project that was
partially divided into 4 sub-projects and with the
integration of the common elements. Given a set of
tasks:



5

3.1 Community Project
• Find the utilization rate;
• Minimum number of processors required;
• Check the feasibility of the task set by simulat-

ing using the 3 schedulers, namely, EDF, RM
and LL if appriopriate; and

• Create a user-friendly graphical frontend that
presents all the features of tool to the user.

3.2 Sub-Project 1
• For a set of preemptable tasks, for uniprocessor

case, analyze which of the Schedulability tests
1 to 7 are applicable.

3.3 Sub-Project 2
• The case of non-preempt able sporadic tasks

for uniprocessor, check whether schedulability
test 8 is applicable.

3.4 Sub-Project 3
• In the case of multiprocessors scheduling for

non-preemptable tasks, analyze which of the
Schedulability tests 9 and 10 are applicable.

3.5 Sub-Project 4
• Consider a set of precedence constraints for a

uniprocessor, apply algorithm B (Dr Mok ’84)
to get the EDF-scheduling for the task set.

• Extend Algorithm B to include start times
beyond 0 and periodic taks.

4 TOOLS USED

4.1 Hardware:
• CPU: 2.0 G Hz
• Memory: 1 GB
• OS: WinXP, Red Hat Linux

4.2 Software:
Programming Language Package
• Java Version
• Java(TM)
• Java Hotspot

4.3 Integrated Development Environment
(IDE)
• net beans IDE 5.5.1

5 EXPERIMENTS

5.1 Algorithm B

Single instance non-premptable tasks may be
scheduled by an algorithm known as Algorithm B,
where:

1) Sort the tasks according to their deadlines in
non-decreasing order and label the tasks such
that d1 ≤ d2 ≤ ... ≤ dn.

2) Schedule taskTn in the time interval[dn −
cn, dn].

3) While there is a task to be scheduled do:
• Suppose S is the set of all unscheduled

tasks whose successors have been sched-
uled.

• Schedule as late as possible the task with
the latest deadline S.

4) Shift the tasks toward time 0 while maintain-
ing the execution order indicated in step 3.

6 RESULTS

The tool delivers with a high level on confidence
accurate results.

7 CONCLUSION

8 FUTURE WORK

The tool is able to handle EDF, LL and RM
schedulers. It can be extended to be a universal
scheduler implementing many more techniques and
algorithms. If the verification model is also inte-
grated in the tool, the tool will be unbeatable.

REFERENCES

[1] M.K. Cheng, “Real-Time Systems Scheduling, Analysis and
Verification”, John Wiley & Sons, New Jersey. 2002.

[2] C.L. Liu and J. Layland, “Sqcheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment”, Journal of the
ACM, Vol. 20, no. 1, Jan. 1973, 46-61.

[3] C.M. Krishna and K.G. Shin, “Real-Time Systems”, McGraw-
Hill, New York, 1997.

[4] A.K. Mok, “The Design of Real-Time Programming Systems
Based On Process Models”,In Proceedings of IEEE-CS Real-
Time Systems Symposium , 1984.

[5] B. Koch, “The Theory of Task Scheduling in Real-Time Sys-
tems: Compilation and Systematization of the Main Results”,
Universitat de llles Balears, Dec. 1999.

[6] K. Jeffay, D.F. Stanat , C.U. Martel, “On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks”,In Proceedings of
twelfth IEEE Real-Time Systems Symposium, San Antonio, Texas,
Dec. 1991, 129-139.



6

[7] M.L. Dertouzos, A.K. Mok., “Mulitprocessor On-Line Schedul-
ing of Hard-Real-Time Tasks”,IEEE Transactions On Software
Engineering, Vol. 15, no. 12, Dec. 1989

[8] P. Brucker, “Scheduling Algorithms”, Fifth edition, Springer,
Heidelberg, 2007.

[9] M.R. Garey, D.S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness”, W.H. Freeman and
Company, San Francisco, 1979.

[10] H. Kopetz, “Real-Time Systems Design Principles for Dis-
tributed Embedded Applications”, Vol. 395, Springer, 1997.

[11] J. Liu, “Real-Time Systems”, Prentice Hall, 2000.


