PEARLS: An Integrated Environment for Task
Scheduling

Nilam Chand, Bindiya Mansharamani, Rafael Romero , Will Beazley, and Stefan
Andrei

Department of Computer Science,
Lamar Unviersity, Beaumont TX, 77710, USA
{nilamc, bindiyam, rafaelr, williamb, sandrei}@cs.lamar.edu

Abstract —The scheduling problem answers the question whether a given set of input tasks is schedulable (or feasible).
It has been studied since '70s and impressive results have been revealed to the scientific community. This paper presents
an implementation tool, PEARLS i.e, Pliable Earliest Deadline First, Rate Monotonic, Least Laxity Schedulers, based
on some of the most significant existing schedulability analytical feasibility conditions and schedulability algorithms.If
the input tasks set is feasible, our tool can simulate all the traditional scheduling methods:rate monotonic (RM), earliest
deadline first (EDF) and least laxity(LL). Moreover, the tool is designed to handle both preemptive as well as non
preemptive tasks. Both periodic and sporadic tasks and precedence contraints may also be considered in the input.
Experimental results have been conducted for our tool implemented in the recent Java Development Kit (JDK) version
1.6 on a Pentium GHz system having 1IMB memory. We tested our tool on several real-time systems specifications, and
the obtained experimental results have confirmed that our tool is efficient and useful.

Index Terms —Real-Time Systems, Real-Time Scheduling, Schedulability Testing, Uniprocessor Schedulability, Multi-
Processor Schedulability

O

1 INTRODUCTION which task, thus determining the execution order of
these tasks. For example, a set of tasks Eartdo
D ECISION versions of scheduling problems besp, expression evaluationT,="do a mouse move”,
long to NP and most of them are NP-hard [9]7,=qo a document printing’excuted by the same
[8]. Researchers have concentrated their efforts dghcessor”. For the multiprocessors and distributed
find efficient heuristics that can solve the schedtgystems, scheduling means also to determine an
ing problem in all circumstances: preemptable @jssignment of these tasks to a specific processor,

non-preemptable, with or without precedence cog:g. 7, and 7; above are done by processé#y,
straints, uniprocessor or multiprocessor, and so Qfhd T}, is done by processaps.

Some of the traditional methods are Rate-Monotonic geheduling is a central activity of a computer

(RM), Earliest-Deadline-First (EDF), and Leastsystem, usually performed by the operating system.
Laxity (LL). It is also necessary in many non-computer systems
Our tool has a two-fold contribution. Firstly, it(e.g., assembly lines). In the case of real-time
performs certain preliminary tests and, secondly, dtheduling, the goal is to meet the deadline of every
gives the simulation of scheduling the set of inpuhsk by ensuring each task can complete execution
tasks. by its specified deadline. The deadline is obtained
Our paper integrates all these heuristics in onfsom the environmental constraints imposed by the

one single tool able to do analysis and simulaticapplication.

of an arbitrary set of tasks. Scheduling analysis is to determine whether a
Given a set of (computer) tasks (also called prepecific task of a set of tasks satisfying certain con-

cesses), scheduling is to determine when to execatmints can be successfully scheduled (completing

execution of every task by its specified deadlinéd determine the performance of the tasks in the
using a specific scheduler. These conditions gweocessor. For scheduling, we needsaeduling
formulated as achedulability test, that is to validate algorithmand a way to determine thgiority of the
whether a given application can satisfy its specifigdsks. There are two types of scheduling schemes,
deadlines when scheduled according to a specti@tic/compile time scheduling and dynamic/runtime
scheduling algorithm. A schedulability test is oftescheduling [5].
done at compile time, before the computer systemScheduling can be done by using different tech-
and its tasks start their execution. If the test can b&ues that focus upon critera such the number
performed efficiently, then it can be done at run-timef processors, types of tasks or preemption schemes.
as an on-line test also callsdnulation. PEARLS is In a processor based scheduling where the focus
able to do both scheduling analysis and simulatiois. upon the number of processors one can use
uniprocessor scheduling where the scheduling is
1.1 Definitions done only once before execution at compile time.
This next section defines the key terms used. .T.his method is inheriently Stf"‘tic since the prior-
ities are not reevulated overtime and thus do not

A Real Time System (RTS) is a system that :)
can produce results in a certain time. Time is awange' Tasks may be preemptable with or without

important factor that determines that efficiency &recedence constraints. Otherwisenatiprocessor

an RTS. Simulation is often used to analyze t é:hedUI:n% schemethmaymorl thStf?he usid’mthf’c’i
RTS. It is building a model (computer or physiczﬁl OWEVET, Increases the complexity ot the system a

model) of a system under study and implementi € scheduling_. F_or these other types OT scheduling
actions allowed in the system on the model. hemes a priori knowledge of: Deadlines, Com-

simulator can carry out simulated executions of trPe“g‘;t;Zr;r;mes’ and the Start times of the tasks is

simulated system and can display the outcomesrbe[rhere are three main types of tasks in a RTS

these executions[1]. A schedulability test Va"datasingleinstance task is a task that executes only
whether the application under study meets a giv o :
PP y g once. A periodic task, is a task that has many

set of constraints. Th&chedulablity utilization is .) : . . .
the maximum utilization allowed for a set of taskgpstances or iterations, and there is a fixed time (pe-
d) between two consecutive releases of the same

that will guarantee a feasible scheduling of this ta%l?))
set g g ask. A sporadic task has zero or more instances,

AtaskT is a computer process, typically denoteand there exists a minimum interval between two

thus: T = (s, ¢,p,d, D), for simplicity, we some- consecutive releases of the same task.

times avoid to mention all 5 of these elements, e.%,WEent the sc_hsdullng_tﬁllov;/ﬁ pre_empttlggi_tthere
T = (0,1,4,4,) advoids mentioning thebsolute an be two variations, either there psemptability

deadline D. TaskT has following membersRart or priority based scheduling which relies on whether
Time, which defines when the task is ready fg Process can be interrupted, prempted or otherwise

execution and denoted by Computation Time, that 'S (OF must be) non-preemptable, having critcal
is the worst case execution time for a particular taSECtioNs which are atomic. In preemptive scheduling
and denoted by; Period, which is the least requiredthe control is transferred to the higher priority job

interval in the execution of a task and is denoted enever It becomes rea_dy, or we can h_a\m)t&
p Relative Deadline, which is a deadline relative eemptive based scheduling which is similar to the

to the start time and denoted ki and Absolute first-in, first-out (FIFO) scheme. The lower priority

Deadline, which is the absolute or the wall clockatc‘ks are aI_Iowed to execute, even It the higher
time and usually denoted by (= s+d) [1]. priority task is there in the ready queue.

2 SCHEDULING 2.1 Scheduling Techniques

Scheduling is the main activity in the implemen- Schedulers can be categorized into fixed-priority
tation of a real time system. The synchronizatioschedulers and dynamic-priority schedulers. In a
between the processors and the task set is handigdd-priority scheduler, the priority of all instances
by the scheduler. It is the job of the schedulerof a task is the same whereas in a dynamic-priority

scheduler, the priority of the instances of a task may Jobld| s; | ¢ | pi | di
vary. A popular example of fixed-priority scheduler 1 0144
is Rate Monotonic (RM). The tasks in this scheme 2 0111212
are prioritized in accordance with their period. The 3 02|88
RMS executes a task the moment an instance is TABLE 1

ready with shortest periOd. A taSK has a hlgher An Examp|e of Task Set For Uniprocessor
priority than task.J, if and only if the periodp;

< pi. Earliest Deadline First (EDF) and Least

Laxity (LL) are the examples of dynamic-priority

scheduler. EDF is designed to execute the task at thé.2 Schedulability Test 2

every instant it is ready and has the earliest absolutecor an independent task set that is preemptable
deadline (i.e. ,.D = S+ d). If two or more tasks and periodic on a uniprocessor, if U be the uti-
have the same deadline, EDF randomly selects dipation then, The task set is schedulablelif <
one for the next execution. It is a dynamic-priorityim,, ., n(2'/" — 1) = In2 ~ 0.6931. [2]

scheduler since task priorities may change at run-For example, the task set in Table 2.2.1 does not
time depending on the nearness of their absoligatisfy Schedulability Test 2 because>U0.771
deadline. This scheduling can, for large task sets,

achieve up to 69% of processor utilization. LL i€-2.3 Schedulability Test 3

often called Minimum-Laxity-First (MLF) or Least- For a task set sorted in the increasing order of
Slack-Time-First (LST) algorithm. It(i) denotes their period then ifw;(t) = >y, e * pi/pk,0 <

the remaining computation time of a task at timet < p;, Task J; is schedulable if and only if
and d(i) denotes the deadline of a task relative tihere exists aw;(t) < ¢, for any time instant
the current time, then the /emphlaxity (or slack) oft,t = kp,,j =1,...,i,k =1, ..., |pi/pj]| .

a task at time is d(i) — (7). In other words laxity If the relative deadlinel; # the periodp;, then

is the maximum time a task can delay executign is replaced bymin(d;,p;) in the above formula.
without missing its deadline anytime in the future. For example, the task set in Table 2.2.1 is not
The scheduler executes at every instant the reagbhedulable, since at time =2 it cannot find a value
task with the smallest laxity. It has been proved thaf w < t.

both LL and EDF are optimal for preemptable tasks

[5], [1]. 2.2.4 Schedulability Test 4
Given the value of; the computation time of task
2.2 Schedulability Tests J;, a set of n periodic tasksd; >= p;), a necessary

. _and sufficient condition for feasible scheduling of
Schedulability tests are performed to check if @s task set on a uniprocessor is:

given set of tasks satisfy specified constraints. There. U=c1/p1+ .+ can/p, < 1
exist many sufficient and/or necessary conditions_ - exarln Ile the task set in table 2.2.1 is schedu-
that can be used as good schedulability tests. tPi% xamp'e, . o .
. : . able, since the deadlines are equal to the periods,
subsections contains a selection of ten such tests: P
and Utilization is<= 1.
- Remark: for a task set containing some tasks
2.2.1 h lability Test 1 . . X
Schedulability Test whose relative deadlined; are less than their

For an independent task set that is preemptablgrings no easy schedulability test exists with a
and periodic on a uniprocessor with necessary and sufficient condition.

o d;i > p;
« p; are multiples of each other 2.2.5 Schedulability Test 5
o« U=ci/pi+ ...+ cu/pn Given a set of independent, preemptable, and

The tasks are RM schedulable if and only/if< 1. periodic tasks on a uniprocessor, a feasible condition

For example, the task set in Table 2.2.1 is RMs U = ¢;/min(dy, p1) + ... + ¢, /min(d,, p,) < 1
schedulable becausg < p; < ps3, p1 = 2p2, p3 = For example, the task set in table 2.2.1 is schedu-
dpy andU = ¢1/p1 + co/p2 +c3/ps = 1/4+1/2+ lable, since the deadlines are equal to the periods,
2/8 =1. and Utilization is< 1.

2.2.6 Schedulability Test 6 scheduled at runtime even if their start times were

States that if U be the total utilization of thiginknown or different. A priori knowledge of the
tasks and the maximum relative deadline among tfgadlines and computation times in enough for LL
task deadlines be dmax and P is the least comn@Jgorithm.
multiple (LCM) of these tasks’ periods, with the For example, task set in Table 2.2.9, all the jobs
sum of computation times with absolute deadlife@ve the same start time O and their deadlines
less that t, s(t). Then this set of tasks is not ED@Nd computation times are known in advance. Here
schedulable if either of the following conditiongvhen the number of processors is 2, EDF does not

holds: hold but LL does. Now even if we change the start
U1 time of job 3 to 2, LL does hold true.
o t <min(P+dma(U/(1=U))"*"1=i=n (p;—d;)) Jobld| s; | ¢; | d; | ps
such thats(t) > t. 1 o112 4
For example, the task set in table 2.2.1 is not 2 0l213 |4
schedulable, since the second criteria fails. 3 0lalala
Jobld| ¢; | p; TABLE 3
1 10| 50 An Example Task Set For Multiprocessor
2 15|70
3 10| 40
TABLE 2 2.2.10 Schedulability Test 10

An Example Task Set with Sporadic Task Given a set of k independent, preemptable (at

discrete time instants), and periodic tasks on a
multiprocessor system with processors and =
N a/prt..+ee/pr <n,T=GCD(py,...,px) , and
2.2.7. Schgdulablllty Test 7 | | t = GCD(T, T(c1/p1), ... T(cx/pr) -
This test is for a task set with sporadic tasks. If |f ¢ is integral then, the given task set is schedu-
pS and cS be the period and allocated time for thghle.
Differed Server. If U is the utilizationof the DS then For example, task set in Table 2.2.9, when the

o Ps < P1 < ... <Py <2pg jobs can be preempted only at the integral time
o Pp > Ps+Cs interval, the tasks can be scheduled becdlise
« This is RM-schedulable if the total utilizationGCD(4,4,4) = 4 and t = GCD(4,1,2,4) = 1
of this ta§k set is at most/(n) = (n — which is an integral value.
D) 1]
For example, the task set in table 2.2.6 is sched43 Precedence Constraints
lable, since it satisfies all the criteria. Order of execution of tasks can be specified
by adding precedence constraints to the scheduling
2.2.8 Schedulability Test 8 problem for a single instance tasks on a unipro-

If the non preempt able task set M = the set @fssor. A task precedence graph can be used that
periodic tasks + set of sporadic tasks and the initidépicts tasks as nodes and a directed edge to in-
laxity I; of taskT; = d; — ¢;, then each sporadicdicate the precedence relationships between tasks.
taskl; be (c;,d;, p;) is replaced by an equivalent-or example,T; to T; means that the joli; must
periodic task”i = (c'i,d'i, p't) as follows: complete before joll; can start.

° C; = Cz',d; = Ci,p; = mZn(pzalZ —+ 1)

3 DESIGN
2.2.9 Schedulability Test 9 The tool was developed as project that was

For a multiprocessor, a schedule exists if thegartially divided into 4 sub-projects and with the
deadlines for a single instance tasks whose stantegration of the common elements. Given a set of
times are equal, then the same set of tasks cantasks:

3.1

3.2

3.3

3.4

3.5

Community Project 5 EXPERIMENTS

Find the utilization rate; 5.1 Algorithm B

Minimum number of processors required; : .
N . Single instance non-premptable tasks may be

Check the feasibility of the task set by simulat- : .

ing using the 3 schedulers, namely, EDF, RI\§1cheduled by an algorithm known as Algorithm B,

. S where:
and LL if appriopriate; and
Create a user-friendly graphical frontend that 1) Sort the tasks according to their deadlines in
presents all the features of tool to the user. non-decreasing order and label the tasks such
thatd, < d, < ... <d,,.
. 2) Schedule task, in the time interval[d, —
Sub-Project 1 e).

For a set of preemptable tasks, for uniprocessor3) Wwhile there is a task to be scheduled do:
case, analyze which of the Schedulability tests . Suppose S is the set of all unscheduled

11to 7 are applicable. tasks whose successors have been sched-

uled.
Sub-Project 2 « Schedule as late as possible the task with
The case of non-preempt able sporadic tasks the latest deadline S.
for uniprocessor, check whether schedulability 4) Shift the tasks toward time 0 while maintain-
test 8 is applicable. ing the execution order indicated in step 3.
Sub-Project 3 6 RESULTS

In the case of multiprocessors scheduling for Th | dell ith a high level fid
non-preemptable tasks, analyze which of the | "€ to0l delivers with a high level on confidence

Schedulability tests 9 and 10 are applicable, 2ccurate results.

Sub-Project 4 7 CONCLUSION

Consider a set of precedence constraints for8a FUTURE WORK

uniprocessor, apply algorithm B (Dr Mok '84) _
to get the EDF-scheduling for the task set. ~ The tool is able to handle EDF, LL and RM

Extend Algorithm B to include start timesSchedulers. It can be extended to be a universal
beyond 0 and periodic taks. scheduler implementing many more techniques and
algorithms. If the verification model is also inte-
grated in the tool, the tool will be unbeatable.

4 TooLs USED
4.1 Hardware:
. CPU: 2.0 G Hz REFERENCES
« Memory: 1 GB [1] M.K. Cheng, “Real-Time Systems Scheduling, Analysisdan
« OS: WinXP, Red Hat Linux Verification”, John Wiley & Sons, New Jersey. 2002.
[2] C.L. Liu and J. Layland, “Sqcheduling Algorithms for Miil
programming in a Hard-Real-Time Environment”, Journallaf t
4.2 Software: ACM, Vol. 20, no. 1, Jan. 1973, 46-61.
. [3] C.M. Krishna and K.G. Shin, “Real-Time Systems”, McGraw
Programming Language Package Hill, New York, 1997.
. Java Version [4] A.K. Mok, “The Design of Real-Time Programming Systems
Based On Process Modelsf, Proceedings of |IEEE-CS Real-
« Java(TM) Time Systems Symposium , 1984.
« Java Hotspot [5] B. Koch, “The Theory of Task Scheduling in Real-Time Sys-
tems: Compilation and Systematization of the Main Results”
. Universitat de llles Balears, Dec. 1999.
4.3 Integrated Development Environment [6] K. Jeffay, D.F. Stanat , C.U. Martel, “On Non-Preemptive
(|DE) Scheduling of Periodic and Sporadic Taskis,Proceedings of

twel fth | EEE Real-Time Systems Symposium, San Antonio, Texas,
net beans IDE 5.5.1 Dec. 1991, 129-139.

[7] M.L. Dertouzos, A.K. Mok., “Mulitprocessor On-Line SeHul-
ing of Hard-Real-Time Tasks|EEE Transactions On Software
Engineering, Vol. 15, no. 12, Dec. 1989

[8] P. Brucker, “Scheduling Algorithms”, Fifth edition, 8pger,
Heidelberg, 2007.

[9] M.R. Garey, D.S. Johnson, “Computers and IntractabiliA
Guide to the Theory of NP-Completeness”, W.H. Freeman and
Company, San Francisco, 1979.

[10] H. Kopetz, “Real-Time Systems Design Principles forsDi
tributed Embedded Applications”, Vol. 395, Springer, 1997

[11] J. Liu, “Real-Time Systems”, Prentice Hall, 2000.

