
Optimization of Real-Time Systems

Timing Specifications

Ştefan ANDREI1 and Albert M.K. CHENG2

1 School of Computing, National University of Singapore, andrei@comp.nus.edu.sg

2 Department of Computer Science, University of Houston, cheng@cs.uh.edu

Abstract. Real-time logic (RTL) is useful for the verification of a safety

assertion SA with respect to the specification SP of a real-time system.

Since the satisfiability problem for RTL is undecidable, there were many

efforts to find proper heuristics for proving that SP → SA holds. However,

none of such heuristics necessarily finds an “optimal implication”.

After verifying SP → SA, and the system implementing SP is deployed,

performance changes as a result of power-saving, faulty components, and

cost-saving in the processing platform for the tasks specified in SP affect

the computation times of the specified tasks. This leads to a different but

related SP , which would violate the original SP → SA theorem if SA

remains the same. It is desirable, therefore, to determine an optimal SP

with the slowest possible computation times for its tasks such that the SA

is still guaranteed. This is clearly a fundamental issue in the design and

implementation of highly dependable real-time/embedded systems.

This paper tackles this fundamental issue by describing a new method for

relaxing SP and tightening SA such that SP → SA is still a theorem.

Experimental results show that only about 10% of the running time of the

heuristic for the verification of SP → SA is needed to find an optimal

theorem.

Keywords: optimization, formal method, timing constraint

1 Introduction

Real-time systems can be defined by either a structural specification (how their

components work) or a behavioral specification (showing the response of each com-

ponent in response to an internal or external event). A behavioral specification

often suffices for verifying the timing properties of the system. Given the behav-

ioral specification of a system (denoted by SP) and a safety assertion (denoted by

SA) to be analysed, the goal is to relate a given safety assertion with the system

specification [1, 2]. If SA is a theorem derivable from SP , then the system is safe.

If this is the case, then we say that SP → SA is a theorem or a tautology (from

now on, we shall use the term “tautology”).

Usually, the verification of the specification of a real-time system against the

safety assertion is the main objective, that is, to check whether SP → SA is a

tautology or not. A first algorithm to do this was based on propositional formulas

written in the disjunctive normal form [2]. An incremental approach was recently

described in [3] as a way to do the verification only of a newly added specification

(by not repeating the verification for the old specification). All these approaches are

focused on the verification and/or debugging of SP → SA, and not the optimiza-

tion of this tautology. However, it may happen that SP contains overly “strong”

timing constraints or SA can be improved by “stronger” timing constraints. These

issues lead us to the challenging question: “Can we provide a most relaxed spec-

ification SP and/or a most tight safety assertion SA such that SP → SA is a

theorem?” This question represents an optimization problem, and it is the subject

of this paper.

Consider the following motivation for addressing this problem. Following the

verification of SP → SA, and the deployment of the system implementing SP ,

performance changes in the processing platform for the tasks specified in SP af-

fect the computation times of the specified tasks. This leads to a different but

related SP , which would violate the original SP → SA theorem if SA remains the

same. For instance, a slower processing platform leads to longer tasks’ computa-

tion times. Performance changes in the processing platform can be the result of

power-saving (a voltage-scalable CPU running at a slower speed), faulty compo-

nents (one of two motors moving a railroad-crossing gate malfunctions), cost-saving

(a subset of the water pumps in a process control system is shutdown), and other

unexpected reasons. Deriving optimal theorems (or quantifying tolerances), there-

fore, will allow the system designer to determine how far the performance of the

processing platform can drift from the norm without violating the SA. This is

clearly a fundamental issue in the design and implementation of highly dependable

real-time/embedded systems.

The processing platform (PP) for the tasks specified in SP is the collection of

processors or executors which actually perform these specified tasks. For example,

a specified task for execution on a processor (CPU) operating at 2 GHz clock

speed requires 5 ms of computation time. To save power at runtime because the

processor runs on a portable battery, the processor reduces its clock speed to 1

GHz. This would increase the computation time of this task to 10 ms. Although

the SA remains the same, the SP of the implemented system changes as a result of

this performance change in the processing platform (CPU). The processing platform

needs not be a computer processor. As another example, consider a railroad crossing

system. In response to a sensor detecting the approach of a train to a crossing, the

SP states that the gate is lowered in 10 seconds. The processing platform for this

task consists of two motors. If one motor malfunctions, then the processing time

for this task is increased to 20 seconds, which may violate the SA.

Briefly, the general idea is to start with a SP → SA tautology, and to relaxe SP

and/or tight SA as long as SP → SA remains a tautology. For instance, considering

the (abstract) example of SP = {x + 10 ≤ y, y − 20 ≤ z} and SA = {x− 15 ≤ z},
then it is obvious that SP → SA is a tautology. If we relax SP to {x + 5 ≤ y,

y− 20 ≤ z}, then SP → SA is still a tautology (we shall see in Section 3 that this

is an optimal one).

This paper tackles this fundamental issue in the design and implementation

of highly dependable real-time/embedded systems. The next section presents the

real-time logic used to express both the specification and safety assertion. Section

3 describes our technique to optimize the SP → SA theorem. A complete demon-

stration of our technique is shown in Section 4 using the well-known case-study of

railroad crossing. Section 5 demonstrates that for the existing real-time systems

only 10% overhead of the time necessary for the verification of SP → SA is needed

for the optimization of it. Related work and conclusions end this paper.

2 The Real-Time Logic Background

Real-time logic (RTL), which is based on a first-order logic with restricted features,

was introduced in [1] to capture the timing requirements of real-time systems. Real-

Time Logic provides a uniform way for the specification of relative and uniform

timing of events. It is an extension of integer arithmetic without multiplication

(Presburger arithmetic) that adds a single uninterpreted binary occurrence func-

tion, denoted by @, to represent the relationship between events of a system, and

their times of occurrence. The equation @(e, i) = t states that the time of the i−th

occurrence of event e is t. Let us denote with Z, N and N+ the set of integers,

positive integers, and strict positive integers, respectively. The time occurrence

function is a mapping @: E × N+ → N, where E is a domain of events, and such

that @ is strictly monotonically increasing in its second argument, i.e., @(E, i) <

@(E, i+ 1), for any i ∈ N+. It is supposed that all events may occur infinitely

often. There are no event variables, or uninterpreted predicate symbols. So, RTL

formulas are boolean combinations of equality and inequality predicates of stan-

dard integer arithmetic, where the arguments of the relations are integer valued

expressions involving variables, constants, and applications of the function symbol

@. Usually, there are four classes of events, namely: stop and start events (↑A and

↓A denote the start and stop events of the action A), transition events and external

events (prefixed with Ω). The correctness of a real-time system can be achieved by

computing the satisfiability of an associated propositional formula.

Let LP be the propositional logic over the finite set of atomic formulae (vari-

ables) V = {A1, ..., An}. A literal L is an atomic formula A (positive literal) or its

negation A (negative literal). Any function S : V → {0, 1} is an assignment that

can be uniquely extended in LP to a general propositional formula F . The binary

vector (y1, ..., yn) is a truth assignment for F over V = {A1, ..., An} if and only if

S(F) = 1 such that S(Ai) = yi, ∀ i ∈ {1, ..., n}. The formula F |[yi/Ai] denotes F

for which all the occurrences of variable Ai are replaced by yi. A formula F is called

satisfiable if and only if there exists a structure S for which S(F) = 1. A formula

F is called unsatisfiable (or contradiction) if and only if F is not satisfiable. Any

finite disjunction of literals is a clause. Any propositional formulae F ∈ LP can

be translated into the conjunctive normal form (CNF): F = (L1,1∨ ... ∨L1,n1)∧ ...

∧(Ll,1∨ ... ∨Ll,nl
), where the Li,j ’s are literals. In this paper, we shall use a set

representation for the clausal formula F = {{L1,1, ..., L1,n1}, ..., {Ll,1, ..., Ll,nl
}},

or simply F = {C1, ..., Cl}, where Ci = {Li,1, ..., Li,ni
}, to denote CNF. A clause

is called positive (or negative) if and only if it contains only positive (or negative)

literals.

A particular subclass of RTL formulas is the so-called path RTL, [2, 4] and it

has two restrictions:

a) each arithmetic inequality may involve only two terms and an integer con-

stant, where a term is either a variable or a function

b) no arithmetic expressions with a function may take an instance of itself at

any other nesting level as an argument.

The main approach for timing constraints verification of a real-time system is

to express the specification and safety assertion in terms of path RTL. Then, in

order to translate these into an equivalent Presburger arithmetic formula, each

@(E, i) is replaced by an uninterpreted function fE(i). This translation is denoted

by Presb(). Now, to show that SP → SA is a tautology is equivalent to proving

that SP ∧ ¬SA is unsatisfiable. The corresponding formula for SP ∧ ¬SA can be

translated into CNF and denoted by PF1, where every literal has the general form:

v1+ I ≤ v2, where v1, v2 are function occurrences and I ∈ Z an integer constant

(obviously, an equality can be expressed by a pair of inequalities). The equivalent

CNF form can be obtained after skolemising, which are essentially positive clauses.

This translation is denoted by Skolem(). We denote by pos() the function applied

to the CNF which returns the set of positive clauses.

For each literal v1+ I ≤ v2, two nodes labelled with v1 and v2 are linked by

an arc (v1, v2) with weight +I. Thus, a set of inequalities represented by such a

graph (known as the constraint graph, denoted as CG1) is unsatisfiable if and only

if a cycle is present in the graph with a positive total weight on it [2]. Considering

Xi,1, Xi,2, ..., Xi,ni as the i−th positive cycle (where the sum of weights of arcs is

positive), then the formula Pi = Xi,1∧ Xi,2∧ ... ∧Xi,ni is unsatisfiable (so, ¬Pi is

a tautology).

A variation of Herbrand’s Theorem for this approach was presented in [2]. It says

that: “a set S of clauses is unsatisfiable if and only if there is a finite unsatisfiable

set of ground instances of S and ¬Pi, ∀ i ∈ {1, ..., n}, where each Pi is the

conjunction of inequalities corresponding to the arcs in a positive cycle detected

in the constraint graph for S”. The above formulation permits one to use any

method in propositional logic to check for unsatisfiability as positive cycles are

detected and the appropriate clauses are added to the existing set of clauses. So,

the intention of this technique is to apply the Herbrand Theorem to the denial

of SP → SA. Therefore, PF1 is satisfiable if and only if PF1 ∧ {¬Pi | for all

positive cycle i} is satisfiable. The mapping PosCycle() is returning the set of

negative clauses corresponding to the positive cycles of the constraint graph. The

clausal formula PF1 contains only positive clauses corresponding to all arcs of

the constraint graph, and only negative clauses corresponding to positive cycles.

Regardless of whether each clause is positive or negative, the CNF satisfiability

still remains NP-complete [2].

We may capture the above verification of a real-time system in the algorithm

below.

Algorithm Init:

1. k = 1; SP1 = SP ; SA1 = SA; F1 = ¬(SP1 → SA1);

2. F 1
Presb = Presb(F1); F 1

CNF = Skolem(F 1
Presb);

3. F 1
pos = pos(F 1

CNF); CG1 = (N1, E1); F 1
neg = PosCycle(CG1, F

1
CNF);

4. PF 1 = F 1
pos ∪ F 1

neq over V1 the set of propositional variables;

Despite these restrictions, the satisfiability of path RTL is undecidable [4]. This

fact makes the automatic debugging of timing constraints an extremely hard prob-

lem. The path RTL formulas exploit efficiently the constraint-graph technique in

integer programming (also called refutation by positive cycles) [2]. Moreover, in [4],

it is proved that the refutation by positive cycles is incomplete for path RTL (that

is, even if the constraint graph attached to the formula has no cycles, it may hap-

pen that the formula is still unsatisfiable). Despite this, Wang and Mok mentioned

that the refutation by positive cycles method is believed to be a natural technique

for reasoning about timing inequalities.

The class of path RTL formulas is very practical and expressive [2, 5]. For

example, it was used to describe the timing properties of a moveable control rods in

a reactor [2], the Boeing 777 Integrated Airplane Information Management System

[6], and of the X-38, an autonomous spacecraft designed and built by NASA as a

prototype of the International Space Station Crew Return Vehicle [7].

3 Optimal timing constraints

This section is devoted to the definition of “optimal” timing constraints over the

integers. First, we need a notion to capture the posibility of choosing any proper

integer constant in a timing constraint of the form x + I ≤ y, where x and y

represent variables over integers, and I is an integer constant. This is expressed in

Definition 1.

Definition 1. Given IN a set of timing constraints, we denote by ground(IN)

the set {(x, y) | x + I ≤ y ∈ IN, where I ∈ Z}.

For instance, considering IN1 = {x1+3 < x2, x2−7 < x3} and IN2 = {x1−2 <

x2, x2 + 1 < x3}, we get that ground(IN1) = ground(IN2) = {(x1, x2), (x2, x3)}.
We define now a way to compare timing constraints.

Definition 2. We say that the timing constraint x+ I ≤ y is (strictly) stronger

than x + I − J ≤ y if and only if (J > 0) J ≥ 0.

Given two sets of timing constraints used in the specifications SP1 and SP2 of

a real-time system, we say that SP1 is stronger than SP2 (we denoted this as

SP1 ¹ SP2) if and only if for any timing constraint of SP2 there exists a stronger

timing constraint of SP1. If there exists at least one timing constraint of SP1 that is

strictly stronger than one timing constraint of SP2, then SP1 is strictly stronger

than SP2 (we denoted this as SP1 ≺ SP2).

For example, x + 7 < y is a stronger timing constraint than x + 5 < y. Con-

sidering sets of constraints, we may have for instance {x + 7 < y, x − 3 < z} ≺
{x + 5 < y, x− 4 < z}.

We remind the reader that SP → SA is a tautology if and only if whenever

SP holds then SA holds, too. In fact, the meaning of (strictly) “strong” refers to

the implication over the set of timing constraints. The next result establishes the

formal relationship between “strong”-ness and implication.

Theorem 1. Given S1 and S2 two sets of timing constraints such that S1 ¹ S2

then S1 → S2 is a tautology.

Proof. Let us take an arbitrary timing constraint of S2, that is, x + I ≤ y. Since

S1 ¹ S2, then there exists a stronger timing constraint of S1, say x + I + J ≤ y,

where J ≥ 0. Suppose now that S1 holds, i.e., all the timing constraints of S1 are

true. We have to show that all the timing constraints of S2 are true, too. Obviously,

x + I ≤ x + I + J , for any J ≥ 0. Since x + I + J ≤ y belongs to S1, it means

x + I ≤ y, so any arbitrary timing constraint of S2 is true. That is, S2 holds, too.

In conclusion, S1 → S2 is a tautology. ut

For instance, since {x1 + 4 < x2, x2 − 5 < x3} ¹ {x1 + 3 < x2, x2 − 7 < x3},
by applying Lemma 1 we get that {x1 + 4 < x2, x2 − 5 < x3} → {x1 + 3 < x2,

x2 − 7 < x3} is a tautology. Now, it is time to define what is an optimal set of

constraints.

Definition 3. We say that SP → SA is an optimal tautology if there are no

other SP ′ and SA′ where ground(SP) = ground(SP ′), ground(SA) = ground(SA′),

SP ≺ SP ′ or SA′ ≺ SA, such that SP ′ → SA′ is a tautology.

Let us consider the following simple specification and safety assertion: SP =

{x + 10 ≤ y, y − 20 ≤ z} and SA = {x − 15 ≤ z}. Obviously, SP → SA is a

tautology, but it is not an optimal one in the sense of Definition 3. Here are some

optimal tautologies:

1. SP1 = {x + 10 ≤ y, y − 20 ≤ z} and SA1 = {x− 10 ≤ z};
2. SP2 = {x + 5 ≤ y, y − 20 ≤ z} and SA2 = {x− 15 ≤ z};
3. SP3 = {x + 8 ≤ y, y − 20 ≤ z} and SA3 = {x− 12 ≤ z}.

Obviously, SP1 → SA1, SP2 → SA2 and SP3 → SA3 are tautologies. Furthermore,

we observe that ground(SP) = ground(SP1) = ground(SP2) = ground(SP3) =

{(x, y), (y, z)} and ground(SA) = ground(SA1) = ground(SA2) = ground(SA3) =

{(x, z)}. Moreover, the first two tautologies keep either the specification or the

safety assertion unchanged. On the contrary, the third case changes both the spec-

ification and the safety assertion, i.e., SP ≺ SP3 and SA3 ≺ SA.

The fact that the above tautologies are optimal is also not difficult to check since

the variables and constants can take only integer values. For example, SP1 → SA1 is

an optimal tautology because SP1 cannot imply a stronger set of timing constraints,

such as {x − I ≤ z | I ≤ 9}. In terms of real-time systems specifications, by

considering an action x with the starting time startx and ending time endx, then

the timing constraint startx + c ≤ endx is “optimal” if and only if c is the largest

integer such that the considered timing constraint holds. If so, we say that this

formula allows for the slowest processing platform regarding the action x.

By putting the above results altogether, we design Algorithm A below to com-

pute an optimal tautology.

Input: SP , SA such that SP → SA is a tautology;

Output: SP ′, SA′ such that SP ′ → SA′ is an optimal tautology;

Method:

1. k = 1; SP1 = SP; SA1 = SA;

2. while (true) {

3. let SPk+1 such that SPk ¹ SPk+1;

4. let SAk+1 such that SAk+1 ¹ SAk;

5. if (SPk+1 → SAk+1 is a tautology) then

6. if (SPk+1 == SPk and SAk+1 == SAk) then EXIT WHILE;

7. else k = k + 1;

8. else EXIT WHILE; }

9. SP ′ = SPk; SA′ = SAk;

The while loop of Algorithm A is terminating when there are no changes to

be done for SPk and SAk (i.e., lines 6 and 8). This ensures that SPk → SAk is

an optimal tautology. Lines 3 and 4 offer the chance to change either SPk, SAk or

both of them. The challenging issue in Algorithm A is which SPk+1 and SAk+1 to

choose such that the condition from the if statement (line 5) is always evaluated

to true. In other words, we want to avoid the verification of SPk+1 → SAk+1 by

using the previous SPk → SAk that was already proved to be a tautology. In this

way, Algorithm A can do many changes of SP and SA, without checking again

whether SP → SA is a tautology.

In order to efficiently solve this issue, let us consider the constraint graph,

as explained in Algorithm Init (Section 2). The key idea of our approach is to

preserve PF 1 and change only some weights of arcs from positive cycles of CG1.

So, we can get a more relaxed specification and a more tightened safety assertion.

These changes will be of course reflected back into the original SP and SA. Since

PF 1 is unchanged, there is no need to repeat the verification of SP → SA. Details

of this technique are shown the next section.

4 Motivating Example in RTL

To illustrate our technique, we choose as our case study the well-known “rail-

road crossing” problem. Its behavioral specification (SP) is described in natural

language [2, 3, 5] as follows: “When the train approaches the sensor, a signal will

initiate the lowering of the gate”, and “Gate is moved to the down position within

30s from being detected by the sensor”, and “The gate needs at least 15s to lower

itself to the down position”.

The goal of this real-time system is described by the following safety assertions

(SA): “If the train needs at least 45s to travel from the sensor to the railroad

crossing”, and “the train crossing is completed within 60s from being detected by

the sensor”, then “we are assured that at the start of the train crossing, the gate

has moved down and that the train leaves the railroad crossing within 45s from

the time the gate has completed moving down”.

Now, we run Algorithm Init, in order to verify this real-time system specifica-

tion against the safety assertion. We express it in terms of path RTL, as follows:

SP : ∀x (@(TrainApproach, x) ≤ @(↑DownGate, x) ∧
∧ @(↓DownGate, x) ≤ @(TrainApproach, x)+ 30) ∧
∧ ∀y (@(↑DownGate, y)+ 15 ≤ @(↓DownGate, y))

SA : ∀t ∀u (@(TrainApproach, t)+ 45 ≤ @(↑TrainCrossing, u) ∧
∧ @(↓TrainCrossing, u) < @(TrainApproach, t)+ 60 →
→ @(↑TrainCrossing, u) ≥ @(↓DownGate, t) ∧
∧ @(↓TrainCrossing, u) ≤ @(↓DownGate, t) + 45)

In order to translate this into an equivalent Presburger arithmetic formula, we

use the following notations: @(TrainApproach, x) will be f(x), @(↑DownGate, x)

will be g1(x), @(↓DownGate, x) will be g2(x), @(↑TrainCrossing, u) will be h1(u),

@(↓TrainCrossing, u) will be h2(u), and so on. The complete translation into the

Presburger arithmetic formula is:

SP : ∀x (f(x) ≤ g1(x) ∧ g2(x) ≤ f(x)+ 30) ∧ ∀y (g1(y)+ 15 ≤ g2(y))

SA : ∀t ∀u (f(t)+ 45 ≤ h1(u) ∧ h2(u) < f(t)+ 60 → g2(t) ≤ h1(u) ∧
∧ h2(u) ≤ g2(t) + 45)

The equivalent CNF after skolemising (the substitution [T/t][U/u] corresponds

to the ¬SA part, where T and U are two new constants) is:

SP : ∀x ∀y (f(x) ≤ g1(x) ∧ g2(x)− 30 ≤ f(x) ∧ g1(y)+ 15 ≤ g2(y))

¬SA : f(T)+ 45 ≤ h1(U) ∧ h2(U)− 59 ≤ f(T) ∧ (h1(U)+ 1 ≤ g2(T) ∨
∨ g2(T)+ 46 ≤ h2(U))

Next, the constraint graph is constructed (Figure 1).

g2(T)

h1(U)

g2(x)
g1(x)

15

−30

g1(y)
g2(y)f(x) 0

f(T)

45

46

−59

1

h2(U)

Figure 1. Railroad crossing constraint graph

We use the following notations for the literals: A1 = f(x) ≤ g1(x), A2 = g2(x)−
30 ≤ f(x), A3 = g1(y)+ 15 ≤ g2(y), A4 = f(T)+ 45 ≤ h1(U), A5 = h2(U)− 59 ≤
f(T), A6 = h1(U)+ 1 ≤ g2(T), A7 = g2(T)+ 46 ≤ h2(U). Therefore, PF1 has the

positive clauses: {A1}, {A2}, {A3}, {A4}, {A5}, {A6, A7}.
Three positive cycles in the constraint graph have been identified (Figure 1), so

PF1 has the negative clauses: {A2, A4, A6}, {A4, A5, A6, A7}, {A1, A3, A5, A7}.
Of course, the unification of the first-order term is applied [2, 5], e.g., the nodes

labelled with f(x) and f(T) are considered as one using the substitution [T/x].

We obtain that PF1 is unsatisfiable, so SP ∧ ¬SA is too. Thus, SP → SA is a

tautology, i.e., the real-time system is safe.

Let us illustrate now the execution of Algorithm A on our case study. Obviously,

the positive literals A1, A2, ..., A7 correspond to either SP, SA, or ¬SA. The reason

to consider both SA and ¬SA is because some of the original timing constraints

may remain the same, whereas others have to be negated. For example, A1 appears

identical in SA, whereas A6 appears as in ¬SA, which in turn is the negation of SA.

The next result establishes the link between a set of constraints and its negation.

We denote by ¬(x + I ≤ y) the constraint y − I + 1 ≤ x. This notation can be

easily extended to a set of timing constraints S, by denoting with ¬S the set of

timing constraints obtained after doing the negation of all timing constraints of S.

Lemma 1. Given S1 and S2 two sets of timing constraints such that S1 ¹ S2,

then ¬S2 ¹ ¬S1.

Proof. Without loss of generality, we suppose that ground(S1) = ground(S2). Let

us consider two arbitrary timing constraints x + I − J ≤ y of S2 and x + I ≤ y of

S1, where J ≥ 0. It is easy to check that {y − I + 1 ≤ x} ¹ {y − I + J + 1 ≤ x}.
This implies that ¬S2 ¹ ¬S1. ut

As mentioned in [2], the unsatisfiability of SP ∧ ¬SA is obtained by consider-

ing the positive cycles of CG1. The key point of our approach in identifying the

relaxation of SP and the tightening of SA is to make the positive cycles to have

the weight equal to 1 (or having the closest positive integer greater than 1). We

denote by w(C) the weight of cycle C (the sum of all weights of the cycle arcs).

Given the constraint graph CG, we say that a positive cycle C is independent if

and only if C has at least an arc which does not appear in other positive cycles of

CG. We say that CG is an optimal constraint graph if and only if:

• all independent positive cycles C have the weight 1;

• for any non-independent positive cycle C, if an arc decreases its weight, then

at least one independent positive cycle will change its weight to 0 or to a negative

integer.

As such, we can rewrite Algorithm A into Algorithm B in an equivalent form that

uses the constraint graph as a necessary data structure.

Input: SP , SA such that SP → SA is a tautology, and CG1 the original

constraint graph;

Output: SP ′, SA′ such that SP ′ → SA′ is an optimal tautology;

Method:

1. k = 1; SP1 = SP; SA1 = SA;

2. while (there is an independent positive cycle C of CGk such that w(C) > 1) {

3. identify the arc (v1, v2) of weight I of cycle C that does not occur in other

positive cycle of CGk;

4. decrease the weight of (v1, v2) such that w(C) = 1 and denote the new

constraint graph CGk+1;

5. change SPk and SAk according to the new weight;

6. k = k + 1; }

7. SP ′ = SPk; SA′ = SAk;

Now, let us run our case study as an input for Algorithm B. As mentioned

above, CG1 has three positive cycles denoted as C1 = (A2, A4, A6), C2 = (A4, A6,

A7, A5), and C3 = (A1, A3, A7, A5). Obviously, C1 and C3 are independent cycles

as they contain the arcs A2 and A3 that do not occur in other positive cycles. But

C2 is a non-independent cycle as its arcs appear in C1 and C3. Algorithm B will

first identify C1 as an independent positive cycle and will decrease the weight of

A2 from −30 to −45 because w(C1) = 16. So the new weight of C1 is 1 (in the

new constraint graph denoted with CG2). Next, Algorithm B identifies either A1

or A3 as a potential arc for which the weights can be decreased. Since w(C3) = 2,

we can decrease the weight of A3 from 15 to 14, so the new weight of C3 will be

1. The while loop of Algorithm B will terminate and display the new optimal

specification:

SP ′ : ∀x ∀y (f(x) ≤ g1(x) ∧ g2(x)− 45 ≤ f(x) ∧ g1(y)+ 14 ≤ g2(y))

Note that SA′ is the same as SA. Lemma 1 helps to identify the proper timing

constraint that has to be updated (line 5 of Algorithm B). Since SP ≺ SP ′, we

remark that SP ′ is the most relaxed specification starting from SP that implies

SA.

5 Experimental results

Our Java implementation of Algorithm B is called OPRATEL (Optimization of

Path ReAl-TimE Logic) and the corresponding prototype is written as a Java

package. We compare the execution times of OPRATEL with an existing tool

(SDRTL, [8]) which performs verification for real-time systems specifications de-

scribed in path-RTL. In our experiments, we consider the same real-time systems

benchmark as in [8], namely the railroad-crossing (7 variables, 9 clauses, 9 distinct

nodes and 3 positive cycles in the constraint graph), the reactor (22 variables, 25

clauses, 39 distinct nodes and 5 positive cycles in the constraint graph) and the

X-38 (79 variables, 80 clauses, 54 distinct nodes and 6 positive cycles in the con-

straint graph). We ran both SDRTL and OPRATEL on the same computer system,

namely a Pentium IV, 2.4GHz using 512MB of main memory. The obtained results

are summarized in Table 1.

Real-time #variables #clauses #nodes #posCycles SDRTL OPRATEL

system (sec.) (sec.)

railroad 7 9 9 3 0.10 0.12

crossing

reactor 22 25 39 5 0.80 0.88

X-38 79 80 54 6 4.12 4.36

Table 1. Execution times of SDRTL and OPRATEL

Analyzing Table 1, we state that OPRATEL needs nearly the same execution

time to find an optimal solution as SDRTL verifies that SP → SA is a theorem.

The difference is due to the fact that OPRATEL performs the verification followed

by the optimization of SP → SA. However, the overhead (i.e., this execution

time difference between SDRTL and OPRATEL) is not very significant since it is

between 2% and 10%. The reason for only 10% more than SDRTL overhead (and

no more than that) is because the verification was done only once, at the beginning

of checking whether SP → SA is a theorem. The subsequent task is responsible

only for changing SP and/or SA such that SP → SA becomes an optimal theorem

(by avoiding checking again that SP → SA is a theorem).

6 Related work

Works on the optimization of embedded and real-time systems have focused on dif-

ferent levels of abstraction, from high-level component design to circuit and code-

level optimizations. For examples, a selected list of optimization works include the

following. Hellestrand [9] overviews the high-level architectural design issues of em-

bedded systems, highlighting the development of these systems driven by a variety

of constraints such as market adaptivity and speed. Carchiolo, Malgeri and Man-

gioni [10] describe the synthesis of formal specifications of the hardware/software

in the codesign of embedded systems. By using a formal language called templated

T-LOTOS, they can specify a system by observing the temporal ordering of the

events from the outside of the system. Zhao et al [11] introduce a method to re-

position code so that the worst-case execution time (WCET) of the tasks can be

tightened and hence these tasks are more likely to meet their deadlines. Henzinger

et al [12] employ composability to efficiently generate embedded code in the dis-

tributed Giotto. Pop, Eles and Peng [13] show how to use a frame packing technique

driven by a schedulability analysis to develop more efficient multicluster distributed

embedded systems.

Most of these works tackle specific aspects of embedded/real-time systems de-

sign and synthesis, making them less portable in general. Furthermore, they are

often tailored to particular models and architectures. It is therefore difficult to port

these techniques to work on different platforms. On the other hand, our approach

is based on the specification language path-RTL, which is basically the standard

first-order logic augmented with the occurrence function to denote an event oc-

currence time. This makes it general for specifying embedded/real-time systems

at different levels of abstraction. Our optimization framework is also novel in that

it is not tied to a particular architecture or model. Any system and safety as-

sertions of interest that can be specified in path-RTL can be optimized, making

our approach applicable in a variety of settings. Moreover, since our optimization

is applied to RTL specifications and safety assertions, it is also implementation-

language-independent if our target is code. Code written in a variety of languages

can be readily prototyped from the optimized specifications.

7 Conclusions

This paper tackles a fundamental issue in the design and implementation of highly

dependable real-time/embedded systems. We described a new method for relaxing

SP and tightening SA such that SP → SA is an optimal theorem. Experimental

results show that only about 10% of the running time of the heuristic for the

verification of SP → SA needs to find an optimal theorem.

Acknowledgments. We thank to Chen Chunqing for the useful discussions

that improved this work.

References

1. F. Jahanian and A. K. Mok, “Safety analysis of timing properties in real-time sys-

tems,” IEEE Transactions on Software Engineering, vol. SE-12, no. 9, pp. 890–904,

1986.

2. F. Jahanian and A. K. Mok, “A graph-theoretic approach for timing analysis and its

implementation,” IEEE Transactions on Computers, vol. C-36, no. 8, pp. 961–975,

1987.

3. S. Andrei and W.-N. Chin, “Incremental satisfiability counting for real-time systems,”

in Proceedings of 10th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS ’04), 2004, pp. 482–489.

4. F. Wang and A. K. Mok, “RTL and refutation by positive cycles,” in Proceedings

of Formal Methods Europe Symposium, ser. Lecture Notes in Computer Science, vol.

873, Springer Verlag, 1994, pp. 659–680.

5. A. M. K. Cheng, Real-time systems. Scheduling, Analysis, and Verification. U. S.

A.: Wiley-Interscience, 2002.

6. A. K. Mok, D.-C. Tsou, and R. C. M. de Rooij, “The MSP.RTL real-time sched-

uler synthesis tool,” in Proceedings of the 17th IEEE Real-Time Systems Symposium

(RTSS ’96). IEEE Computer Society, 1996, pp. 118–128.

7. L. E. P. Rice and A. M. K. Cheng, “Timing analysis of the X-38 space station crew

return vehicle avionics,” in Proceedings of the 5-th IEEE-CS Real-Time Technology

and Applications Symposium, 1999, pp. 255–264.

8. S. Andrei, W.-N. Chin, A. M. K. Cheng, and M. Lupu, “Systematic debugging of

real-time systems based on incremental satisfiability counting,” in Proceedings of 11th

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS ’05),

2005, pp. 519–528.

9. G. R. Hellestrand, “Systems architecture: the empirical way: abstract architectures

to ’optimal’ systems.” in EMSOFT, 2005, pp. 147–158.

10. V. Carchiolo, M. Malgeri, and G. Mangioni, “Hardware/software synthesis of formal

specifications in codesign of embedded systems,” Design Automation of Electronic

Systems, vol. 5, no. 3, pp. 399–432, 2000.

11. W. Zhao, D. Whalley, C. Healy, and F. Mueller, “Improving WCET by applying

a WC code-positioning optimization,” ACM Transactions on Architecture and Code

Optimization, vol. 2, no. 4, pp. 335–365, 2005.

12. T. A. Henzinger, C. M. Kirsch, and S. Matic, “Composable code generation for dis-

tributed giotto,” ACM SIGPLAN Notices, vol. 40, no. 7, pp. 21–30, 2005.

13. P. Pop, P. Eles, and Z. Peng, “Schedulability-driven frame packing for multicluster

distributed embedded systems.” ACM Transactions on Embedded Computing Sys-

tems, vol. 4, no. 1, pp. 112–140, 2005.

