[image: image7.jpg]ll‘%

LAMAR UNIVERSITY

A:Member of The Texas Siate University Syseam

ISSN: 1940-8978

Computer Science Department Technical Reports - Lamar University
Computer Science Department, Lamar University,

211 Red Bird Lane, Box 10056, Beaumont, TX 77710, U.S.A.

URL: http://cs.lamar.edu/tech_reports

Email: tech_reports@cs.lamar.edu

Translation of Computer Science Courses
into the American Sign Language for
Deaf and Hard of Hearing Students
	
	

	 Pratishara Maharjan
 Lamar University,

 Computer Science Department

 pmaharjan1@my.lamar.edu

	 Prem Tamang
 Lamar University,

 Computer Science Department

 ptamang@my.lamar.edu

	 Dr. Stefan Andrei

 Lamar University
 Computer Science Department

 sandrei@my.lamar.edu

	 Dr. Traci P. Weast
 Lamar University
Deaf Studies and Deaf Education Department,

 traci.weast@lamar.edu

March 31, 2010
Offering better opportunity for Deaf and Hard of Hearing students in learning Science, Technology, Engineering and Mathematics (STEM) has always been a top priority in the world, in particular United States. As a consequence, American Sign Language (ASL) has improved drastically in recent years. For instance, the ‘Shodor Education Foundation’ has developed some technical sign language materials for the study of computational science. However, it still lacks most of the signs related to the Computer Science. In addition, the need of an interpreter in ASL creates another challenge for Deaf and Hard of Hearing students in learning. There are software tools developed based on the Signing Avatar as interpreter that help for greater understanding of the concept with significant access to the curriculum. However, most of these tools perform just a direct translation from English Language, and that makes it difficult for Deaf and Hard of Hearing students to understand since their primary language is ASL. The main objective of this project is to design and implement a system that involves American Sign Language Dictionary (ASLD) consisting of all the necessary Computer Science terminologies in ASL for course work, a Parser that translates the English Language to ASL Text and a Signing Animation System to perform sign language gestures. Furthermore a Java based tool with Graphical User Interface (GUI) was developed. It embeds the teaching course materials such as Microsoft© Power Point slides in English and videos of avatar showing corresponding gestures of the course in ASL. An immediate benefit of this project is that, our tool will assist the teaching of Computer Science oriented courses for Deaf and Hard of Hearing Students in an effective manner.
1 Introduction

This chapter introduces the background, motivation, and description of the project as well as an overview of this technical report.
1.1 Background

The American Sign Language (ASL) is a complex visual-spatial language used by the Deaf and Hard of Hearing community in the United States and English-speaking parts of Canada [2]. In ASL the information is expressed with a combination of hand shapes, palm orientations, movements of the hands, arms and body, location in relation to the body, and facial expressions [3]. As the technology is improving, many software tools are being developed such as “Vcommunicator” from Vcom3D [4], “Say It Sign It” from IBM [5] and “TESSA” from Visicast [6]. All of these tools use the Signing Avatar, a computer modeled representation of a human being [7], to perform the Sign Language gestures. However, none of these tools expresses the information in ASL. In addition, these tools do not support the Microsoft© Power Point slides and Microsoft© Word as input files, which are mostly used by the teachers for teaching purpose. This work overcomes these difficulties.

1.2 Motivation

The use of the real-time text captioning has become an alternative of choice in many educational settings, especially for STEM subjects [8]. This dependence on English captioning however does not ensure equal access, as the average Deaf or Hard of Hearing high school graduates read below the fourth grade level. Additionally, study materials are all in English (textbooks, notes, etc.) and since it is not the first language for Deaf or Hard of Hearing students, they find difficulty in understanding them. Furthermore, there is no online repository currently available that provides the gestures related to Computer Science terminologies. One database, the Shodor Education Foundation [1] funded with support from National Science Foundation (NSF) has compiled various STEM terms, but the highly specialized signs for Computer Science are not included. To make these Computer Science Courses truly accessible, it is imperative that students be allowed to view and understand around 500 additional signs not currently available in either paper or online dictionaries. For example, concepts such as “object-oriented programming”, “loop”, “repository”, and “arrays” have specific meanings and semantics when discussed in the area of Computer Science.

Due to these problems, Deaf and Hard of Hearing students who are highly interested in Computer Science are not able to take courses. With the help of the Department of Deaf Studies and Deaf Education, this project intends to develop an extension of Computer Science American Sign Language Dictionary (ASLD), an online repository of specialized Computer Science terminologies in ASL. Furthermore, this project helps to translate the given Computer Science related lectures written in English Language to the American Sign Language and generates the corresponding Signing Avatar animation.

1.3 Project Description

This project intends to assist the teaching of Computer Science oriented courses to Deaf and Hard of Hearing students. The project focuses on introducing Computer Science course related ASL signs, translation of English text contained in teaching materials to ASL text, and presenting an avatar to perform the Sign Language gestures corresponding to the translated text. The team from the Department of Deaf Studies and Deaf Education provides the appropriate ASL sign with equivalent semantics for Computer Science course related terminologies.

To the best of our knowledge, no work has been done on the translation of the English text to the American Sign Language text at the grammatical structure level based on the Stanford Parser [9]. The Stanford Parser identifies the grammatical structure for most of the English sentences very accurately. Hence, we present our new algorithm for translation of English to ASL sentence based on this tool.

1.4 A Simple Example

The ASL grammar is completely different than the English grammar. It has a different topic (that is the order of words in a sentence), and many other different rules as shown below.

Input:

 English Text: Java is a good programming language.

The above sentence is a simple English Language sentence that involves the following grammar rules of converting to the American Sign Language.

 Grammar Involved:

i) S+V+O (O+S+V

The left hand side of the above translation rule refers to the standard grammatical structure of a simple English sentence whereas the right hand side relates to standard grammatical structure of ASL topic. The symbol ‘S’ stands for Subject, ‘O’ stands for Object and ‘V’ stands for Verb.

ii) Adjectives are placed after their corresponding nouns. In the above sentence, ‘good’ is placed after ‘programming language’.

iii) ‘Be’-verbs are eliminated. In the above sentence ‘is’ is removed.

iv) In addition, determiners and articles are removed. In the above sentence, ‘a’ is removed.

For the above example, we get the following ASL output.

 Output:

 American Sign Language Text: Programming Language good Java.
1.5 Structure of Subsequent Sections

Section 2 briefly defines the translation from English to ASL. Section 3 discusses the design aspects and the detailed implementation of the project. Section 4 shows the performance of our tool with respect to existing tools. Section 5 provides the conclusion for this project and potential future work on this subject.

2. The Method

2.1 Definitions

The Part Of Speech (POS) Tagset is the tag that denotes the part of speech information in an English sentence. The set of these tags is known as the POS Tagset. This project uses the Penn Treebank POS tagset [10] that contains 36 POS tags and 12 other tags (for punctuation and currency symbols).

 E.g. Did John play the game?

 Did/VBD John/NNP play/VB the/DT game/NN?/.

 VBD: Verb, past tense

 NNP: Proper Noun, singular

 VB: Verb, base form

 DT: Determiner/Article

 NN: Noun, singular

A tag that groups POS Tags and represents the part of a sentence in higher level is known as the Syntactic Tag. The set of these tags is known as the Syntactic Tagset. This work uses the Penn treebank syntactic tagset [10] that contains nine tags, e.g.:

 E.g., Did John play the game?

 SQ (Did NP (John) VP (play NP (the game)))

 SQ: Direct Question (This tag shows the sentence in direct question.

 NP: Noun Phrase (This tag shows a set of words that forms a phrase starting with a

noun.

 VP: Verb Phrase (This tag shows a set of words that forms a phrase starting with

 the verb.

The type dependency represents the binary grammatical relationship between two words in sentences. This project uses the Stanford type dependencies [11] that contain 55 grammatical relationships, e.g.:

 E.g. Did John play the game?

 aux (play-3, Did-1)

 aux: auxiliary (This dependency shows the relationship between an auxiliary and a main verb.

The representation of the sentence in a generic tree structure, based on the POS tagging, is known as the Semantic Parse Tree. The semantic parse tree contains the words of the sentences as leaf nodes, and POS tags and syntactic tags as parent nodes.

Non-manual markers consist of various facial expressions, head tilting, shoulder raising, mouthing, and similar signals that are added to hand signs to create meaning. For example, the eyebrows are raised a bit, and the head is slightly tilted forward for “Yes/No” questions.

The grammatical rules that exist in the American Sign Language are called ASL Rules. For example, an ASL sentence has the OSV (Object + Subject + Verb) pattern.

2.2 Algorithm

A tree-based algorithm is used to convert English Text to ASL Text. The following operations are used:

i) Rotation of sub-trees or nodes: This operation is mainly used to change the structure of the existing Semantic Parse Tree. For example, we can use rotation of nodes for changing the grammatical structure of the given sentence from SVO (Subject+Verb+Object) in English to OSV (Object+Subject+Verb) in ASL.

ii) Deletion of sub-trees or nodes: This operation deletes the particular subtree or nodes from the existing tree. For example, deletion of nodes can be used for deleting the articles/determiners from the English sentences.

iii) Addition of sub-trees or nodes: This operation is used to build the semantic parse tree from the POS Tags and Syntactic tags. Each tag forms the nodes of the semantic parse tree. The nodes are added one by one in the tree. This operation is useful to add new nodes, further in the translation process, representing new words to make the context clear in ASL.

Algorithm: ASL Translation
The Input : An arbitrary English sentence

The Output: The translated ASL sentence

Procedure ASLTranslation(input: English_Sentence)

Begin
i) Parse the English sentence using the Stanford Parser which gives the POS Tagset, Syntactic Tagset and Type Dependency as output.

ii) Build the Type Dependency List (TDL) from the given sets of the Type Dependencies.
iii) Generate the Semantic Parse Tree from the given set of POS and the Syntactic Tagset using Addition Operation.

iv) Sort the grammatical rules of ASL based on their priorities stored in the List. Each grammatical rule has its priority set based on its importance.

v) For each rules R in the list Grammatical Rule List (GRL),

a) Fetch the type dependency (TD), associated with the R.

b) Based on the Rule R,

Either
Perform Rotation ()

Or

Perform Addition ()

Or

Perform Deletion ()
c) Add the Non-manual Markers to the nodes in the Tree.

vi) Perform the Preorder Traversal of the final modified SPT. The ASL text is generated by concatenating all the strings at the leaf nodes of the Semantic Parse Tree.

 End.

The following recursive algorithm is used to traverse the semantic parse tree in a preorder manner, i.e., visiting each root node first and then its child nodes from left to right.

Algorithm: Preorder Traversal

Procedure preorder(input: SPT)

Begin

If SPT == null then return;

visit (SPT);

 -- visit/process the root

For (each child with index i of the node SPT)

 preorder (SPT --> child[i]);

 -- traverse the child in

 -- the given List from

 -- left to right

Endfor

End.
The following algorithm represents one of the most important parts of this work. It generates the Signing Avatar animation videos from the English Sentences contained in Power Point slides.

Algorithm: SigningAvatarGeneration

The Input : The PowerPoint Slide containing the English Sentence
The Output: The Signing Avatar animation videos

Procedure ASLTranslation(input: PowerPointSlide)

Begin

SlideList (Get all the slides from PowerPoint using

 Aspose.slides.getSlides()

 For each slide with index i in SlideList

SentenceList (Get all the sentences in slide the

 SlideList[i] using Aspose.slides.getText()

For each sentence with index j in SentenceList

· ASLText = ASLTranslation (SentenceList[j])

· Invoke AutoIt using JavaRunCommand

· Generate Signing Avatar from ASLText

· Export the SigningAvatar animation video to the folder

 EndFor

Endfor

End.
2.3 An Example of an English sentence translation to ASL

We illustrate below in Figure 1 the translation process between the English question “Did John play the game?” into the equivalent American Sign Language sentence.

Syntactic Tagset
(a) SQ: Direct Question b) NP: Noun Phrase c) VP: Verb Phrase

POS Tagset
(a) VBD: Verb, past tense b) NNP: Proper noun, singular

 c) DT: Determiner
 d) VB: Verb, base form

Non-manual Marker
(a) RE: Raised Eyebrows

2.4 Data Structures

The project uses the Java programming language as the programming platform. The Java inbuilt data structure Vector is used to store the sets of grammatical rules, POS Tagset, Syntactic Tagset, Type Dependency Tags and Non-manual Markers.

2.5 Complexity

The above mentioned algorithm uses the Preorder Traversal or the Depth First Search Traversal for the Addition, Deletion and Rotation operations. The time complexity of these operations is based on the time complexity of the Preorder Traversal Search, that is, O(bd). Here, b represents the branching factor of the Semantic Parse Tree, and d represents the maximum depth of the Semantic Parse Tree.
3. The Implementation

3.1 The Design

3.1.1 The System and the Tools

This design includes the following system tools and libraries.

3.1.1.1. The System
We used a system that has Windows 7 Home Premium (64 bit) as its operating system, a 4GB memory (RAM), and an Intel (R) CoreTM 2 Duo CPU P8700 @ 2.53 GHz processor.
3.1.1.2 The Tools and the Libraries

The following tools and libraries are used in this project:

i) The Stanford Parser: This is a natural language parser that works out the grammatical structure of English sentences, for instance, which groups of words go together (as “phrases”) and which words are the subject or the object of a verb. The parser is implemented in Java and is based on probability. It uses knowledge of language gained from hand-parsed sentences to try to produce the most likely analysis of new sentences [9].
ii) Aspose.Slides and Aspose.Words: The commercial tools Aspose.Slides© [12] and Aspose.Words© [12] from the Aspose company are used to interact with the Microsoft© Power Point slides and Microsoft© Word documents. Aspose.Slides provides the interface in Java programming language to manage texts, shapes, tables, animations, adding audio and video to slides, previewing slides, exporting slides to PDF format, etc. Similarly, Aspose.Words is a class library in Java that enables to perform a great range of document processing tasks and supports DOC, RTF, HTML, Open Document, PDF and other formats. This work uses these libraries to extract the English Text from given lectures in Microsoft© Word and Power Point, and to display it on the GUI of the software.
iii) Java Media Framework (JMF): The Java Media Framework (JMF) [13] is a Java based library that provides simple, unified architecture to synchronize and control audio, video and other time-based data within Java applications and applets. This package can capture playback, stream, and transcode multiple media formats. This work uses this library to display the animation videos on the GUI of the software.
iv) AutoIt v3: The AutoIt v3 [14] is a scripting language that is designed for automating the Windows GUI and general scripting. It uses a combination of simulated keystrokes, mouse movement, and window/control manipulation in order to automate tasks in a way not possible or reliable with other languages. It is a powerful language that supports complex expressions, user functions, loops, etc.
v) Vcom3D Tools: Vcom3D [4] provides the following commercial tools to create the gestures corresponding to the new words related to the Computer Science and to perform the sequences of animations from the translated ASL sentences.

a) SignSmith Studio: SignSmith Studio is an authoring tool for creating multimedia that incorporates sign language gestures. This tool uses the Signing Dictionary (containing around 2000 gestures), to insert the gesture corresponding to a given English Word. The transition from one gesture to another (i.e., transition from one word to another) is very smooth and makes this tool very effective for creating ASL signing animation. In addition, the user can export the animation as video files that can be played back without the need of the software.

b) Gesture Builder: The Gesture Builder will allow users to create new gestures (or signs), including gestures that can be spatially inflected at run-time. A key feature of this tool is the use of our Inverse Kinematics (IK) technology. This allows the user to focus on the hand position. Once the user selects a hand shape and positions the hand, the IK software automatically places the joints of the wrist, elbow, and shoulder in the correct position. This approach is fast and easy, and puts the power of creativity completely into the hands of the users. This tool also supports the exporting the newly created gestures in action format which can be added to the Signing Dictionary being used by the SignSmith Studio.

The Supporting Tools are Jdk1.6.1, Net Beans IDE 6.8, and Star UML.
3.1.2. UML Diagram

Figure 2 below represents the UML Class Diagram capturing the structural representation of all the classes, their attributes, their methods, and the relationships between them. Classes represent abstractions of entities with common characteristics. In the figure below, each block represents a separate class and the lines connected between them represent an ‘Aggregation’ relationship. Aggregation is a weak form of association which embodies a part-whole or part of a relationship. It is graphically represented by the hollow diamond shape on the container class and arrow head on the contained class. This project uses the Singleton design pattern, that is, only one instance of the main class ASLGeneratorView is used.
[image: image1.jpg]EjAsLGeneratorApp EjAsLGeneratorview
attibutes attibutes
Operations asiGonViow | Aok e Yo (e asiGenview [MediaPlayer
SO e) | 5195 private JButtan Converter_Buton_Browser P .
private JTextField Converter_TextField_FileName
privats JPanel Convertar_jPanel mplayer crstons
i
[ElAsLGeneratorAboutBox
atributes
private JButton clossButton e appt
aboutBox
EjAsposePowerPointReader
attibutes
privte it totalSlides
privte int currentSlideNo
private Vector styleSets SiJavaRunCommand
private Vector valueSets Attibutes
private Vector offSat Operations
ElEenglishParser
atibutes
private LexicalizedParser Ip ngishparsel

private Scanner printTree
private TresbankLanguagePack tip

ElsemanticParseTree
atibutes
private boolean ok

SPT

perations,

™
Eldependency [ElTypeDependency ElasLGrammar
attibutes T Atributes ASLGrammar
package Sting relatior e i R e] asiGrammar \ | private String ASLGrammarRules_Structurc
package String lword = private Vector dependencyList private Vector aslGrammarRules [EINonMannualMarkers
package String lward - &—} Vs
St (s Operations
dependency o private Vector Markers

private String Marker_Types[0

Figure 2: The UML Class Diagram of the entire project

3.1.3 Implementation Details

This section presents the detailed implementation of the methodology and the design discussed above. The project focuses mainly on translating the English Language text to the American Sign Language text and adding new gestures related to Computer Science terminologies to the existing ASL Dictionary. Basically the project implementation is divided into three activities:

i) The Gesture Creation

ii) The English to ASL Conversion and Signing Avatar Generation

iii) Displaying lectures notes and Avatar video together for teaching purpose

i) Gesture Creation:

The words related to the Computer Science oriented courses are created if they are not found on ASLD (American Sign Language Dictionary). The team from the Deaf Studies and Deaf Education Department, Lamar University, investigated and introduced new ASL signs with equivalent semantics for such Computer Science terminologies. Thereafter the video of the human performing such ASL signs are observed and the ‘VCommunicator Gesture Builder’ tool is used to create the corresponding animated gestures. These avatar-based gestures are then inserted into the ASL Dictionary.

[image: image2.png]

Figure 4: Gesture Creation using the Gesture Builder
ii) English to ASL Conversion and Signing Avatar Creation

The conversion of English to ASL and the creation of the Signing Avatar are complex procedures that involve several tools and algorithms. This process is divided into the following steps:

a) The Input:

This project accepts different forms of input: handwritten files, Microsoft© Power Point, and Microsoft© Word Documents. All the input forms are eventualy converted to strings of English sentences.

i) The handwritten files using Optical Character Recognition: The Optical Character Recognition, usually abbreviated to OCR, is the electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. The project uses the OCR activity to recognize the scanned images of the handwritten text or lectures. The output of this OCR activity is a plain text file which is in turn the input for the Stanford Parser.
ii) Power Point and Word Documents:
Aspose.Slides: The following class library provides the listed packages:

The com.aspose.slides Class. This package is used to read the contents from the Microsoft© Power Point slides and has the following methods:

	getSlides()
	Returns the list of all slides in a presentation.

	getSlideById(long id)
	Returns the slide by Id.

	getSlideByPosition(int position)
	Returns the slide by Slide Position.

	getSlideComments()
	Returns the collection of slide comments.

	getShapes()
	Returns the shapes of a slide.

	getTextFrame()
	Returns the TextFrame object for a Shape.

	getParagraphs()
	Returns the list of all paragraphs in a frame.

	getText()
	Returns the plain text of a portion.

	getFontColor()
	Returns the color of a portion.

	getFontHeight()
	Returns the font height of a portion.

	getFontIndex()
	Returns the index of the used font in a Fonts collection.

	isFontBold()
	Determines whether the font is bold.

Table 1. The Methods of Class Aspose.Slides
b) Natural Language Processing (The Stanford Parser): Before the translation of the English Language to ASL, each word should be first parsed and classified to its respective grammatical structure, i.e., it is the part of speech that has to be identified correctly. This work uses the Stanford Parser for this purpose. This parser defines the POS tagset and the syntactic tagset to represent the grammatical structure of the given sentence.

Part Of Speech Tagset:[image: image3.emf]
Figure 6: The Penn Treebank POS Tagset

Figure 6 enumerates 36 POS tags and 12 others tags (for punctuation and currency symbols) [10] that are used by the Stanford Parser for representing the part of speech information about words and symbols of the English sentences.

Syntactic Tagset:[image: image4.emf]
Figure 7: The Penn Treebank Syntactic tagset
The above figure contains a Syntactic tagset [10] used by the Stanford Parser to represent the sets of words or grammatical structure in the English sentence. Let us consider the following Computer Science related English sentence:

“Java is an object-oriented programming language.”

This is first translated into:

Java/NNP is/VBZ an/DT object-oriented/JJ programming/NN language/NN ./.

The POS Tag tree is given by:

(ROOT

 (S

 (NP (NNP Java))

 (VP (VBZ is)

 (NP (DT an) (JJ object-oriented) (NN programming) (NN language)))

 (. .)))

This tool provides the following classes and methods. The edu.stanford.nlp.parser.lexparser.LexicalizedParser class has the following methods:
	apply(Object in)
	Converts a Sentence/List/String into a Tree. If it cannot be parsed, it is made into a trivial tree in which each word is attached to a dummy tag ("X") and then to a start nonterminal (also "X").

Table 2. The Methods of Class LexicalizedParser
The edu.stanford.nlp.trees.PennTreebankLanguagePack Class

	grammaticalStructureFactory()
	This function returns a GrammaticalStructure suitable for this language/treebank.

Table 3. The Methods of Class PennTreebankLanguagePack
The edu.stanford.nlp.trees.TreePrint Class

	printTree(Tree t,PrintWriter pw)

	This function prints the sentence along with POS Tagset, Syntactic Tagset and Type Dependencies.

Table 4. The Methods of Class TreePrint
c) The ASL Translation: ASL is a complete natural language that has its own syntax and a set of grammatical rules. The direct word by word conversion from English to corresponding signing gestures will not be very effective and cannot be easily understood by the Deaf and Hard of Hearing students if they are practicing ASL. For instance, the basic grammatical structure of an English sentence is S+V+O, in order, whereas in case of ASL, the order is O+S+V. For this purpose, this work generates the Semantic Parse Tree from the given POS tagset and Syntactic tagset in order to perform the tree manipulation operations based on the given ASL Grammatical Rules.

This work uses the following classes for ASL Translation purpose.

The Semantic Parse Tree Class: This class is an Abstract Data Type (ADT) for representing POS tagset and Syntactic tagset in the form of nodes of the Generic tree. The following method provides various ways to manipulate the tree.
	searchNode_Forward(String nodeName, Node curNode, int leafIndex)
	This helper function searches the given node recursively starting from the leftmost child on the basis of node name in the Tree and returns the pointer to the node if it succeeds.

	
searchNode_Reverse(String nodeName, Node curNode, int leafIndex)
	This helper function searches the given node recursively starting from the rightmost child on the basis of node name in the Tree and returns the pointer to the node if it succeeds.

	insertInTree(Node parentNode, Node newNode)
	This private function is a helper function that connects the newly created node to its parent in the Semantic Parser Tree.

	moveNodesInTree(String source, int src_index, String dest, int des_index
	This function helps to exchange the two subtrees in the given tree, i.e., order of the tree. It is used to change the order of the given Sentence S+V+O to O+S+V.

	rearrangeChildNodes(Vector list)
	This function helps to rearrange the nodes in the given tree. It is used to move the adjectives before the noun.

	shiftNodesInTree(Vector list)
	This function helps to shift the nodes in the given SPT, used to put the adverbs before the main verb.

	removeNodes(String nodeName)
	This function helps to prune the subtree or node if the name matches. Used for removing the Articles/Determiners, Auxiliary Verbs.

	insertNonMannualMarker(String nodeName, NonMannualMarkers NMM)
	This function adds the non Non-manual Markers to the given Nodes.

Table 5. The Methods of Class Semantic Parse Tree

The ASLGrammar Class: This class stores the various ASL grammatical rules and provides methods to apply those rules.

	Rule_REMOVE_DETERMINER()
	This method removes the articles/determiners in the given English sentence.

	 Rule_SHIFT_ADJECTIVES()

	This method shifts the adjectives after the noun in the given English sentence.

	This.Rule_SHIFT_ADVERBS()

	This method shifts the adverbs before the main verb.

	Rule_SVO_TO_OSV()
	This method converts the grammatical structure of English sentences from SVO to OSV.

Table 6. The Methods of Class ASLGrammar
The given sets of Grammatical Rules for ASL are listed in the Appendix.

d) The Signing Avatar Generation: Creation of the Signing Avatar performing gestures corresponding to the translated ASL is carried out with the help of the following tools:
i) AutoIt v3: This project uses this tool to automate the various tasks in the SignSmith Studio program. The AutoIt v3 script is converted to the Windows executable program using “Compile script to .exe” program. This Windows executable program is then called from our software that will perform the following tasks: executes the SignSmith Studio from the respective location; selects the File Menu and imports the given file that contains the English sentence; selects the File Menu and exports the Animated Signing Avatar in video format.
ii) SignSmith Studio: This tool is used by our software to translate the given ASL Sentence into videos that show the Avatar performing the signing gesture corresponding to that ASL Sentence.

[image: image5.jpg]o Voo =

Figure 8: Generating the Avatar based animation video using SignSmith Studio

iii) Displaying Lectures Notes and Avatar Video together for teaching purpose: The project provides the Java Based GUI to integrate the Microsoft© Power Point Slides Contents and Avatar Videos together. The content of the slides are shown in jTextPane frame where as the videos are embedded and played using the Java Media Framework. The class and methods involved for this integration are as follows:
The MediaPlayer Class: This class uses the JMF Application Programming Interface (API) and provides the interface to interact with the video from our Java Based Tool.
	playMedia(String _mediaFile)
	This method plays the videos from the given Uniform Resources Locator (URL) into the embedded internal frame by establishing a connection to the data source.

	reload(Player player, String title)
	This method reloads the new video into the internal frame, i.e., establishes a new connection to the data source.

Table 7. The Methods of Class MediaPlayer
The JavaRunCommand Class: This class is used to run the executable program in a separate thread.

	runSignSmith()
	This method executes the SignSmith Studio program from the specified location.

Table 8. The Methods of Class JavaRunCommand
The AsposePowerPointReader Class: This class interacts with the Microsoft© PowerPoint slides using Aspose.Slides API and presents the contents in jTextPane, retaining all its properties.
	nextSlide()
	This method loads the contents of the next Microsoft© Power Point slide of in the jTextPane.

	prevSlide()
	This method loads the contents of the previous Microsoft© Power Point slide of in the jTextPane.

	moveDown()
	This method highlights the next sentence in the current slide in jTextPane and starts playing the corresponding video.

	moveUp()
	This method highlights the previous sentence in the current slide in jTextPane and starts playing the corresponding video.

Table 9. The Methods of Class AsposePowerPointReader
Figure 9 below shows a screen-shoot of our prototype for converting the English text into American Sign Language text that is later interpreted by the Signing Avatar.

[image: image6.png]& LAMAR UNIVERSITY

"2

COMPUTER SCIENCE DEPARTMENT

-Amercian Sign Language Converter-

‘Converter | ASL Player

Slide Content Avatar Player

Course Objectives

[Topics of this course include introduction to the JAVA
\programming language, data and expressions, classes and
objects, condiitionals, loops and arrays.

(2 src slgeneratoncomzdideos ecture\ i) vidZavi

JAVA is an object-oriented programming language.

IAn object-oriented language combine the data and operations
in a single concept, called class.

[This is opposite to traditional non object-oriented BN e e
programming languages where data and operations are In sstText
g|0ba| repOSItOW. object-oriented language programming JAVA is
-Siide Changer- -Speed
(=]

] g s S

Figure 9. Displaying PowerPoint Slide Contents and Avatar Video
4. Experimental Results

Most of the existing tools, like “SignSmith Studio” from Vcom3D, “TESSA” from ViSiCAST and “Say it Sign it” from IBM, use the word to word conversion to generate the Signing Avatar animation of the English sentences. They lack the feature of translating the English sentence to the ASL Sentence. For comparison purposes, a number of ten English sentences unrelated to the Computer Science courses were selected. Signing Avatar animations using SignSmith Studio were created for them. For the same sets of sentences, our tool was used to convert them first to ASL sentences and then generate the Signing Avatar animations. These two sets of animations were presented to the students from the Department of Deaf Studies and Deaf Education. It was found that they can easily understand the ASL Converted animations in comparison to English Converted animations.

Furthermore, we selected one of the Microsoft© Power Point slide from the lecture of Java Class by Dr. Stefan Andrei containing Computer Science related terminologies like “Object-oriented”, ”Loop”, ”Array”, etc. Since we have already created the new ASL Signs with equivalent semantics for these terms, our tool generated the corresponding animations for them whereas SignSmith Studio uses the finger spelling. Learning by observing the finger spelling for each term was much more challenging and time consuming than the animation used in our tool with an equivalent semantics.

These experiments and results show that Deaf and Hard of Hearing students feel more comfortable with Signing Avatar animations expressing information in American Sign Language rather than English Language.

5. Conclusion and Future Work

Today, there is a lack of an online repository that provides the gestures related to Computer Science terminologies. This is considered difficult for Deaf and Hard of Hearing students interested in taking Computer courses. The situation is much worse for the students whose first language is American Sign Language and not English. This is because all the study materials are in English, and the existing Signing Avatar tools also do a direct translation of the English Language for creating gestures. This project introduced new Sign Language gestures with equivalent semantics for Computer Science-oriented courses, with the help of the student team from the Department of Deaf Studies and Deaf Education. In addition, this project provides translation of English to ASL and a Graphical User Interface (GUI) framework that integrates the teaching course materials like Microsoft© Power Point slides and Signing Avatar video together. Thus, we believe this project can be of great significance for the Deaf and Hard of Hearing students and for teachers who teach the Computer Science-oriented courses.

Due to the large number of Grammar Rules in ASL, not all rules are implemented in this work. However, this work provides a plug-in framework for attaching any new rules and manipulating the Semantic Parse Tree, in an easier manner. Adding new rules especially containing non-manual markers will help for a better translation of English to ASL Sentences and thus expressing the information in a significant manner.
In addition, this project currently uses SignSmith Studio for generating a Signing Avatar. This tool still lacks the expression of all the non-manual markers that are created by the ASL Translator. So, a better Signing Avatar System like ‘eSign’ from ViSiCAST [15] [16] and SASL-MT project [17] could be adapted in this work hoping to reduce the execution time.
Bibliography

1. Deaf CS Home. The Shodor Education Foundation, Inc., 2005: [on-line: http://www.shodor.org/succeed-hi/]
2. Lang, H. G. (2002). Higher Education for Deaf Students: Research Priorities in the New Millennium. Journal of Deaf Studies and Deaf Education. 7 (4), 267-80.
3. Charlotte Baker-Shenk, Dennis Cokley. American Sign Language, a Teacher’s Resource Text on Grammar and Culture. In Clerc Books, Gallaudet University Press. ISBN 0-930323-84-X
4. Vcom3D (2006). The Vcom3D Homepage. [On-line: http://www.vcom3d.com.]
5. SiSi - Say It, Sign It. [On-line: http://mqtt.org/SiSi/]
6. ViSiCAST Project. [On-line: http://www.visicast.co.uk/]
7. H|Anim: Humanoid Animation Working Group. [On-line: http://h-anim.org/]
8. Marschark, M., & Hauser, P.C. (2008). Deaf cognition Foundations and outcomes. Perspectives on deafness. Oxford: Oxford University Press.
9. The Stanford Parser: A statistical parser. The Stanford Natural Language Processing Group [on-line: http://nlp.stanford.edu/software/lex-parser.shtml]
10. Mitchell P. Marcus, Mary Ann Marcinkiewicz, Beatrice Santorin. Building a large annotated corpus of English: The Penn Treebank. In Computational Linguistics, pages 313-330, v.19 n.2, June 1993
11. Marie-Catherine de Marneffe and Christopher D. Manning. Stanford typed dependencies manual, September2008.[on-line: http://nlp.stanford.edu/software/dependencies_manual.pdf]
12. Aspose: Your File Format Experts. [on-line: http://www.aspose.com/]
13. JMF: Java Media Framework. [on-line: http://java.sun.com/javase/technologies/desktop/media/jmf/]
14. AutoIt: Automating the Windows GUI [on-line: http://www.autoitscript.com/autoit3/index.shtml]
15. eSign Project: Essential Sign Language Information on Government Networks. [on-line:

http://www.sign-lang.uni-hamburg.de/eSIGN]

16. Uwe Ehrhardt, Bryn Davies, Neil Thomas, Mary Sheard, John Glauert, Ralph Elliott, Judy Tryggvason, Thomas Hanke, Constanze Schmaling, Mark Wells, and Inge Zwitserlood. Animating Sign Language: The eSIGN Approach. [on-line: http://www.visicast.cmp.uea.ac.uk/Papers/eSIGNApproach.pdf]
17. Lynette van Zij. South African sign language machine translation project. In Proceedings of the 8th international ACM SIGACCESS conference on Computers and accessibility, pages 233-234, 2006.
18. Andrea Falletto, Paolo Prinetto and Gabriele Tiotto. An Avatar-Based Italian Sign Language Visualization System. In Electronic Healthcare First International Conference, eHealth, pages 154-160, 2008
19. Kevin Struxness. American Sign Language Grammar Rules. [on-line: http://daphne.palomar.edu/kstruxness/Spring2008/ASLGrammarRules1-08.pdf]
 Output: Game John play?

	 (Raised Eyebrows)

Input: Did John play the game?

 SQ

VP

NP

 NNP

VBD

VB

DT

NN

?

game

play

John

Did

 Root

tt

the

 NP

Grammar Rules�Articles Elimination

SVO (OSV

Auxiliar Verb Elimination

play

Root

VP

 John

 NN

NNP

NP

 game

?

 NP

VB

RE | SQ

.

.

Figure � SEQ Figure * ARABIC �1�: Translation of English sentence to ASL using Semantic Parse Tree

Gestures of Computer Science Courses Related Words

Animation Creator

(Gesture Builder)

ASL Dictionary

Figure � SEQ Figure * ARABIC �3�: Addition of New Gestures related to Computer Science Courses to ASL Dictionary

Stanford Parser

Graphic Engine

(SignSmith Studio)

ASL Dictionary

English Sentence

Aspose.Slides

OCR

English To ASL

Translator

Semantic Parse Tree

ASL Grammar Rules

ASL Sentence

AutoIT

 Signing Avatar

Figure � SEQ Figure * ARABIC �5�: The design overview of the entire software product

No. 1, March 2010

Translation of (Computer Science) Courses

into the American Sign Language for

Deaf and Hard of Hearing Students

Pratishara Maharjan, Prem Tamang, Stefan Andrei, Traci P. Weast

